169 research outputs found

    Die het kleine niet eert ...

    Get PDF

    Techniques for the observation and measurement of red blood cell velocity in vessels of the guinea pig cochlea

    Full text link
    Fluorescence techniques combined with intravital microscopy provide a powerful approach to the study of cochlear blood microcirculation. In the current study, fluorescein isothiocyanate conjugated to high molecular weight dextrans was added to plasma to enhance the visual contrast of flowing blood in microscopic images from the guinea pig cochlea. Photometric signals, obtained from video pictures of the blood vessels, provided a means to continuously measure red cell velocity by using crosscorrelation algorithms to extract the time delay for moving features of the image. Alternatively, a small amount of fluorescently-labeled red blood cells (RBCs) were added to the vascular volume to serve as natural indicators of whole blood flow. The speed of these cells was measured by video photometric detection of the time required for the cells to pass between two predetermined positions in the television image. RBCs can be made fluorescent by chemical bonding of a fluorochrome to the cell membrane or by internal loading of the cell with an inert fluorochrome. Labeled RBCs provide a means to determine blood velocity in capillaries having extremely poor optical contrast, a situation which is generally the case for relatively thick tissues such as the lateral wall of the membranous labyrinth.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26885/1/0000451.pd

    Abnormal blood flow in the sublingual microcirculation at high altitude

    Get PDF
    We report the first direct observations of deranged microcirculatory blood flow at high altitude, using sidestream dark-field imaging. Images of the sublingual microcirculation were obtained from a group of 12 volunteers during a climbing expedition to Cho Oyu (8,201 m) in the Himalayas. Microcirculatory flow index (MFI) was calculated from the moving images of microcirculatory red blood cell flow, and comparison was made between the baseline and high altitude measurements. Peripheral oxygen saturation (SpO2) and Lake Louise scores (LLS) were recorded along with MFI. Our data demonstrate that there was a significant reduction in MFI from baseline to 4,900 m in small (less than 25 μm) and medium (26–50 μm) sized blood vessels (P = 0.025 and P = 0.046, respectively). There was no significant correlation between MFI and SpO2 or MFI and LLS. Disruption of blood flow within microcirculatory may explain persistent abnormal oxygen flux to tissues following the normalisation of systemic oxygen delivery that accompanies acclimatisation to high altitude

    The endothelial glycocalyx: composition, functions, and visualization

    Get PDF
    This review aims at presenting state-of-the-art knowledge on the composition and functions of the endothelial glycocalyx. The endothelial glycocalyx is a network of membrane-bound proteoglycans and glycoproteins, covering the endothelium luminally. Both endothelium- and plasma-derived soluble molecules integrate into this mesh. Over the past decade, insight has been gained into the role of the glycocalyx in vascular physiology and pathology, including mechanotransduction, hemostasis, signaling, and blood cell–vessel wall interactions. The contribution of the glycocalyx to diabetes, ischemia/reperfusion, and atherosclerosis is also reviewed. Experimental data from the micro- and macrocirculation alludes at a vasculoprotective role for the glycocalyx. Assessing this possible role of the endothelial glycocalyx requires reliable visualization of this delicate layer, which is a great challenge. An overview is given of the various ways in which the endothelial glycocalyx has been visualized up to now, including first data from two-photon microscopic imaging

    Deterministic Chaos and Fractal Complexity in the Dynamics of Cardiovascular Behavior: Perspectives on a New Frontier

    Get PDF
    Physiological systems such as the cardiovascular system are capable of five kinds of behavior: equilibrium, periodicity, quasi-periodicity, deterministic chaos and random behavior. Systems adopt one or more these behaviors depending on the function they have evolved to perform. The emerging mathematical concepts of fractal mathematics and chaos theory are extending our ability to study physiological behavior. Fractal geometry is observed in the physical structure of pathways, networks and macroscopic structures such the vasculature and the His-Purkinje network of the heart. Fractal structure is also observed in processes in time, such as heart rate variability. Chaos theory describes the underlying dynamics of the system, and chaotic behavior is also observed at many levels, from effector molecules in the cell to heart function and blood pressure. This review discusses the role of fractal structure and chaos in the cardiovascular system at the level of the heart and blood vessels, and at the cellular level. Key functional consequences of these phenomena are highlighted, and a perspective provided on the possible evolutionary origins of chaotic behavior and fractal structure. The discussion is non-mathematical with an emphasis on the key underlying concepts

    The fully integrated biomedical engineering programme at Eindhoven University of Technology

    No full text
    The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a bachelor-master's programme with two different master's degrees: Master's Degree in Biomedical Engineering and Master's Degree in Medical Engineering. Recently, the programme has adopted semester programming, has included a major and minor in the bachelor's degree phase, and a true bachelor's degree final project. Details about the programme and data about where graduates find jobs are provided in this paper
    corecore