447 research outputs found

    Proximity Action theory of superconductive nanostructures

    Full text link
    We review a novel approach to the superconductive proximity effect in disordered normal-superconducting (N-S) structures. The method is based on the multicharge Keldysh action and is suitable for the treatment of interaction and fluctuation effects. As an application of the formalism, we study the subgap conductance and noise in two-dimensional N-S systems in the presence of the electron-electron interaction in the Cooper channel. It is shown that singular nature of the interaction correction at large scales leads to a nonmonotonuos temperature, voltage and magnetic field dependence of the Andreev conductance.Comment: RevTeX, 6 pages, 5 eps figures. This is a concise review of cond-mat/0008463; to be published in the Proceedings of the conference "Mesoscopic and strongly correlated electron systems" (Chernogolovka, Russia, July 2000

    Dyson-Maleev representation of nonlinear sigma-models

    Full text link
    For nonlinear sigma-models in the unitary symmetry class, the non-linear target space can be parameterized with cubic polynomials. This choice of coordinates has been known previously as the Dyson-Maleev parameterization for spin systems, and we show that it can be applied to a wide range of sigma-models. The practical use of this parameterization includes simplification of diagrammatic calculations (in perturbative methods) and of algebraic manipulations (in non-perturbative approaches). We illustrate the use and specific issues of the Dyson-Maleev parameterization with three examples: the Keldysh sigma-model for time-dependent random Hamiltonians, the supersymmetric sigma-model for random matrices, and the supersymmetric transfer-matrix technique for quasi-one-dimensional disordered wires. We demonstrate that nonlinear sigma-models of unitary-like symmetry classes C and B/D also admit the Dyson-Maleev parameterization.Comment: 16 pages, 1 figur

    Interference induced metallic-like behavior of a two-dimensional hole gas in asymmetric GaAs/Inx_{x}Ga1−x_{1-x}As/GaAs quantum well

    Full text link
    The temperature and magnetic field dependences of the conductivity of the heterostructures with asymmetric Inx_xGa1−x_{1-x}As quantum well are studied. It is shown that the metallic-like temperature dependence of the conductivity observed in the structures investigated is quantitatively understandable within the whole temperature range, T=0.4−20T=0.4-20 K. It is caused by the interference quantum correction at fast spin relaxation for 0.4 K<T<1.5 < T < 1.5 K. At higher temperatures, 1.5 K<T<4<T<4 K, it is due to the interaction quantum correction. Finally, at T>4−6T>4-6 K, the metallic-like behavior is determined by the phonon scattering.Comment: 4 pages, 4 figure
    • …
    corecore