56 research outputs found

    Lignocellulose Conversion via Catalytic Transformations Yields Methoxyterephthalic Acid Directly from Sawdust

    Get PDF
    Poly(ethylene terephthalate) polyester represents the most common class of thermoplastic polymers widely used in the textile, bottling, and packaging industries. Terephthalic acid and ethylene glycol, both of petrochemical origin, are polymerized to yield the polyester. However, an earlier report suggests that polymerization of methoxyterephthalic acid with ethylene glycol provides a methoxy-polyester with similar properties. Currently, there are no established biobased synthetic routes toward the methoxyterephthalic acid monomer. Here, we show a viable route to the dicarboxylic acid from various tree species involving three catalytic steps. We demonstrate that sawdust can be converted to valuable aryl nitrile intermediates through hydrogenolysis, followed by an efficient fluorosulfation–catalytic cyanation sequence (>90%) and then converted to methoxyterephthalic acid by hydrolysis and oxidation. A preliminary polymerization result indicates a methoxy-polyester with acceptable thermal properties

    Mild Pd-Catalyzed Aminocarbonylation of (Hetero)Aryl Bromides with a Palladacycle Precatalyst

    Get PDF
    A palladacyclic precatalyst is employed to cleanly generate a highly active XantPhos-ligated Pd-catalyst. Its use in low temperature aminocarbonylations of (hetero)aryl bromides provides access to a range of challenging products in good to excellent yields with low catalyst loading and only a slight excess of CO. Some products are unattainable by traditional carbonylative coupling.National Institutes of Health (U.S.) (Award GM46059)Danish National Research Foundation (Grant DNRF59)Villum FoundationDanish Council for Independent Researc

    Epistemic geographies of climate change: science, space and politics

    Get PDF
    Anthropogenic climate change has been presented as the archetypal global problem, identified by the slow work of assembling a global knowledge infrastructure, and demanding a concertedly global political response. But this ‘global’ knowledge has distinctive geographies, shaped by histories of exploration and colonialism, by diverse epistemic and material cultures of knowledge-making, and by the often messy processes of linking scientific knowledge to decision-making within different polities. We suggest that understanding of the knowledge politics of climate change may benefit from engagement with literature on the geographies of science. We review work from across the social sciences which resonates with geographers’ interests in the spatialities of scientific knowledge, to build a picture of what we call the epistemic geographies of climate change. Moving from the field site and the computer model to the conference room and international political negotiations, we examine the spatialities of the interactional co-production of knowledge and social order. In so doing, we aim to proffer a new approach to the intersections of space, knowledge and power which can enrich geography’s engagements with the politics of a changing climate

    Efficient palladium-catalyzed electrocarboxylation enables late-stage carbon isotope labelling

    Get PDF
    Carbon isotope labelling of bioactive molecules is essential for accessing the pharmacokinetic and pharmacodynamic properties of new drug entities. Aryl carboxylic acids represent an important class of structural motifs ubiquitous in pharmaceutically active molecules and are ideal targets for the installation of a radioactive tag employing isotopically labelled CO2. However, direct isotope incorporation via the reported catalytic reductive carboxylation (CRC) of aryl electrophiles relies on excess CO2, which is incompatible with carbon-14 isotope incorporation. Furthermore, the application of some CRC reactions for late-stage carboxylation is limited because of the low tolerance of molecular complexity by the catalysts. Herein, we report the development of a practical and affordable Pd-catalysed electrocarboxylation setup. This approach enables the use of near-stoichiometric 14CO2 generated from the primary carbon-14 source Ba14CO3, facilitating late-stage and single-step carbon-14 labelling of pharmaceuticals and representative precursors. The proposed isotope-labelling protocol holds significant promise for immediate impact on drug development programmes

    Carbonylative Suzuki Couplings of Aryl Bromides with Boronic Acid Derivatives under Base-Free Conditions

    No full text
    The carbonylative Suzuki–Miyaura reaction between aryl bromides and arylboronic acid equivalents is herein reported, using base-free conditions and a limited excess of carbon monoxide generated <i>ex situ</i> from stable CO-precursors. Under these conditions, unsymmetrical biaryl ketones were obtained in modest to excellent yields. This method was adapted to the synthesis of the triglyceride and cholesterol regulator drug, fenofibrate, and its <sup>13</sup>C-labeled derivative in good yields from the appropriate CO-precursor

    Palladium Catalyzed Carbonylative Heck Reaction Affording Monoprotected 1,3-Ketoaldehydes

    No full text
    The direct carbonylative palladium catalyzed synthesis of monoprotected 1,3-ketoaldehydes is reported starting from aryl iodides applying near stoichiometric amounts of carbon monoxide. Besides representing platforms for a variety of heterocyclic structures, these motives serve as viable precursors for the highly relevant aryl methyl ketones. The presented strategy can also be adapted for the facile and efficient incorporation of <sup>13</sup>C-labeled carbon monoxide

    An Efficient Method for the Preparation of Tertiary Esters by Palladium-Catalyzed Alkoxycarbonylation of Aryl Bromides

    No full text
    The palladium-catalyzed alkoxycarbonylation of aryl bromides is described for the efficient preparation of tertiary esters. The protocol proved compatible with a wide variety of functionalized (hetero)aromatic bromides, as well as several different sterically hindered tertiary alcohols, affording the alkoxycarbonylated products in high yields. Finally, the formation of aromatic trityl esters is discussed
    corecore