541 research outputs found
Orbital densities functional
Local density approximation (LDA) to the density functional theory (DFT) has
continuous derivative of total energy as a number of electrons function and
continuous exchange-correlation potential, while in exact DFT both should be
discontinuous as number of electrons goes through an integer value. We propose
orbital densities functional (ODF) (with orbitals defined as Wannier functions)
that by construction obeys this discontinuity condition. By its variation
one-electron equations are obtained with potential in the form of projection
operator. The operator increases a separation between occupied and empty bands
thus curing LDA deficiency of energy gap value systematic underestimation.
Orbital densities functional minimization gives ground state orbital and total
electron densities. The ODF expression for the energy of orbital densities
fluctuations around the ground state values defines ODF fluctuation Hamiltonian
that allows to treat correlation effects. Dynamical mean-field theory (DMFT)
was used to solve this Hamiltonian with quantum Monte Carlo (QMC) method for
effective impurity problem. We have applied ODF method to the problem of
metal-insulator transition in lanthanum trihydride LaH_{3-x}. In LDA
calculations ground state of this material is metallic for all values of
hydrogen nonstoichiometry x while experimentally the system is insulating for x
< 0.3. ODF method gave paramagnetic insulator solution for LaH_3 and LaH_{2.75}
but metallic state for LaH_{2.5}.Comment: 35 pages, 5 figure
Combined local-density and dynamical mean field theory calculations for the compressed lanthanides Ce, Pr, and Nd
This paper reports calculations for compressed Ce (4f^1), Pr (4f^2), and Nd
(4f^3) using a combination of the local-density approximation (LDA) and
dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and
the total energy among other properties are examined as functions of volume and
atomic number for an assumed face-centered cubic (fcc) structure.Comment: 15 pages, 9 figure
Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications
We present a simple implementation of the dynamical mean-field theory
approach to the electronic structure of strongly correlated materials. This
implementation achieves full self-consistency over the charge density, taking
into account correlation-induced changes to the total charge density and
effective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used,
and the charge density is computed from moments of the many body
momentum-distribution matrix. The calculation of the total energy is also
considered, with a proper treatment of high-frequency tails of the Green's
function and self-energy. The method is illustrated on two materials with
well-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and the
gamma-phase of metallic cerium, using the Hubbard-I approximation to the
dynamical mean-field self-energy. The momentum-integrated spectral function and
momentum-resolved dispersion of the Hubbard bands are calculated, as well as
the volume-dependence of the total energy. We show that full self-consistency
over the charge density, taking into account its modification by strong
correlations, can be important for the computation of both thermodynamical and
spectral properties, particularly in the case of the oxide material.Comment: 20 pages, 6 figures (submitted in The Physical Review B
Hydrogen atom in a spherical well: linear approximation
We discuss the boundary effects on a quantum system by examining the problem
of a hydrogen atom in a spherical well. By using an approximation method which
is linear in energy we calculate the boundary corrections to the ground-state
energy and wave function. We obtain the asymptotic dependence of the
ground-state energy on the radius of the well.Comment: Revised version to appear in European Journal of Physic
Adlayer core-level shifts of random metal overlayers on transition-metal substrates
We calculate the difference of the ionization energies of a core-electron of
a surface alloy, i.e., a B-atom in a A_(1-x) B_x overlayer on a
fcc-B(001)-substrate, and a core-electron of the clean fcc-B(001) surface using
density-functional-theory. We analyze the initial-state contributions and the
screening effects induced by the core hole, and study the influence of the
alloy composition for a number of noble metal-transition metal systems. Data
are presented for Cu_(1-x)Pd_x/Pd(001), Ag_(1-x) Pd_x/Pd(001), Pd_(1-x)
Cu_x/Cu(001), and Pd_(1-x) Ag_x/Ag(001), changing x from 0 to 100 %. Our
analysis clearly indicates the importance of final-state screening effects for
the interpretation of measured core-level shifts. Calculated deviations from
the initial-state trends are explained in terms of the change of inter- and
intra-atomic screening upon alloying. A possible role of alloying on the
chemical reactivity of metal surfaces is discussed.Comment: 4 pages, 2 figures, Phys. Rev. Letters, to appear in Feb. 199
Lattice Distortion and Magnetism of 3d- Perovskite Oxides
Several puzzling aspects of interplay of the experimental lattice distortion
and the the magnetic properties of four narrow -band perovskite oxides
(YTiO, LaTiO, YVO, and LaVO) are clarified using results of
first-principles electronic structure calculations. First, we derive parameters
of the effective Hubbard-type Hamiltonian for the isolated bands using
newly developed downfolding method for the kinetic-energy part and a hybrid
approach, based on the combination of the random-phase approximation and the
constraint local-density approximation, for the screened Coulomb interaction
part. Then, we solve the obtained Hamiltonian using a number of techniques,
including the mean-field Hartree-Fock (HF) approximation, the second-order
perturbation theory for the correlation energy, and a variational superexchange
theory. Even though the crystal-field splitting is not particularly large to
quench the orbital degrees of freedom, the crystal distortion imposes a severe
constraint on the form of the possible orbital states, which favor the
formation of the experimentally observed magnetic structures in YTiO,
YVO_, and LaVO even at the HF level. Beyond the HF approximation, the
correlations effects systematically improve the agreement with the experimental
data. Using the same type of approximations we could not reproduce the correct
magnetic ground state of LaTiO. However, we expect that the situation may
change by systematically improving the level of approximations for dealing with
the correlation effects.Comment: 30 pages, 17 figures, 8 tables, high-quality figures are available
via e-mai
An augmented space recursion study of the electronic structure of rough epitaxial overlayers
In this communication we propose the use of the Augmented Space Recursion as
an ideal methodology for the study of electronic and magnetic structures of
rough surfaces, interfaces and overlayers. The method can take into account
roughness, short-ranged clustering effects, surface dilatation and
interdiffusion. We illustrate our method by an application of Fe overlayer on
Ag (100) surface.Comment: 22 pages, Latex, 6 postscript figure
Potential, core-level and d band shifts at transition metal surfaces
We have extended the validity of the correlation between the surface
3d-core-level shift (SCLS) and the surface d band shift (SDBS) to the entire 4d
transition metal series and to the neighboring elements Sr and Ag via accurate
first-principles calculations. We find that the correlation is quasilinear and
robust with respect to the differencies both between initial and final-state
calculations of the SCLS's and two distinct measures of the SDBS's. We show
that despite the complex spatial dependence of the surface potential shift
(SPS) and the location of the 3d and 4d orbitals in different regions of space,
the correlation exists because the sampling of the SPS by the 3d and 4d
orbitals remains similar. We show further that the sign change of the SCLS's
across the transition series does indeed arise from the d band-narrowing
mechanism previously proposed. However, while in the heavier transition metals
the predicted increase of d electrons in the surface layer relative to the bulk
arises primarily from transfers from s and p states to d states within the
surface layer, in the lighter transition metals the predicted decrease of
surface d electrons arises primarily from flow out into the vacuum.Comment: RevTex, 22 pages, 5 figures in uufiles form, to appear in Phys.Rev.
- …