13 research outputs found

    Design considerations and analysis planning of a phase 2a proof of concept study in rheumatoid arthritis in the presence of possible non-monotonicity

    Get PDF
    BACKGROUND: It is important to quantify the dose response for a drug in phase 2a clinical trials so the optimal doses can then be selected for subsequent late phase trials. In a phase 2a clinical trial of new lead drug being developed for the treatment of rheumatoid arthritis (RA), a U-shaped dose response curve was observed. In the light of this result further research was undertaken to design an efficient phase 2a proof of concept (PoC) trial for a follow-on compound using the lessons learnt from the lead compound. METHODS: The planned analysis for the Phase 2a trial for GSK123456 was a Bayesian Emax model which assumes the dose-response relationship follows a monotonic sigmoid "S" shaped curve. This model was found to be suboptimal to model the U-shaped dose response observed in the data from this trial and alternatives approaches were needed to be considered for the next compound for which a Normal dynamic linear model (NDLM) is proposed. This paper compares the statistical properties of the Bayesian Emax model and NDLM model and both models are evaluated using simulation in the context of adaptive Phase 2a PoC design under a variety of assumed dose response curves: linear, Emax model, U-shaped model, and flat response. RESULTS: It is shown that the NDLM method is flexible and can handle a wide variety of dose-responses, including monotonic and non-monotonic relationships. In comparison to the NDLM model the Emax model excelled with higher probability of selecting ED90 and smaller average sample size, when the true dose response followed Emax like curve. In addition, the type I error, probability of incorrectly concluding a drug may work when it does not, is inflated with the Bayesian NDLM model in all scenarios which would represent a development risk to pharmaceutical company. The bias, which is the difference between the estimated effect from the Emax and NDLM models and the simulated value, is comparable if the true dose response follows a placebo like curve, an Emax like curve, or log linear shape curve under fixed dose allocation, no adaptive allocation, half adaptive and adaptive scenarios. The bias though is significantly increased for the Emax model if the true dose response follows a U-shaped curve. CONCLUSIONS: In most cases the Bayesian Emax model works effectively and efficiently, with low bias and good probability of success in case of monotonic dose response. However, if there is a belief that the dose response could be non-monotonic then the NDLM is the superior model to assess the dose response

    Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus

    Get PDF
    Type 2 diabetes mellitus (T2DM) is a global epidemic that poses a major challenge to health-care systems. Improving metabolic control to approach normal glycaemia (where practical) greatly benefits long-term prognoses and justifies early, effective, sustained and safety-conscious intervention. Improvements in the understanding of the complex pathogenesis of T2DM have underpinned the development of glucose-lowering therapies with complementary mechanisms of action, which have expanded treatment options and facilitated individualized management strategies. Over the past decade, several new classes of glucose-lowering agents have been licensed, including glucagon-like peptide 1 receptor (GLP-1R) agonists, dipeptidyl peptidase 4 (DPP-4) inhibitors and sodium/glucose cotransporter 2 (SGLT2) inhibitors. These agents can be used individually or in combination with well-established treatments such as biguanides, sulfonylureas and thiazolidinediones. Although novel agents have potential advantages including low risk of hypoglycaemia and help with weight control, long-term safety has yet to be established. In this Review, we assess the pharmacokinetics, pharmacodynamics and safety profiles, including cardiovascular safety, of currently available therapies for management of hyperglycaemia in patients with T2DM within the context of disease pathogenesis and natural history. In addition, we briefly describe treatment algorithms for patients with T2DM and lessons from present therapies to inform the development of future therapies

    PAC Spectrometer for Condensed Matter Study

    Full text link
    A four-detector perturbed angular \gamma\gamma-correlations (PAC) spectrometer for condensed matter study is described. The timing resolution (full-width at half-maximum) is 200 ps for ^{60}Co if BaF_2 scintillators coupled to photomultiplier XP2020Q are used. The spectrometer is equipped with a press; a specially-designed pressure vessel permits one to perform PAC-studies of samples under pressure up to 60 GPa in the on-line mode. In contrast to the common case (usage of single-channel analyzers) the software-controlled energy selection makes the spectrometer easy to use, to control and to adjust

    PAC Spectrometer for Condensed Matter Study

    Full text link
    A four-detector perturbed angular \gamma\gamma-correlations (PAC) spectrometer for condensed matter study is described. The timing resolution (full-width at half-maximum) is 200 ps for ^{60}Co if BaF_2 scintillators coupled to photomultiplier XP2020Q are used. The spectrometer is equipped with a press; a specially-designed pressure vessel permits one to perform PAC-studies of samples under pressure up to 60 GPa in the on-line mode. In contrast to the common case (usage of single-channel analyzers) the software-controlled energy selection makes the spectrometer easy to use, to control and to adjust
    corecore