3 research outputs found

    Behaviour of single-crystal nickel alloy in the conditions of high-temperature hydrogen corrosion

    Get PDF
    This study presents the results of the investigation of the behaviour of ZhS32-VI single-crystal nickel alloy in hydrogen environment or argon atmosphere at 850Β°C. The microstructure and chemical composition of corrosion deposits were studied by scanning electron microscopy and X-ray energy-dispersive analysis. It has been established that in argon containing an admixture of oxygen a dense scale rich in cobalt and nickel oxides is formed. At atmosphere containing 65% hydrogen and 35% argon an increased content of aluminum in the surface composition was noted. The influence of 100% hydrogen leads to segregation of tungsten and rhenium with the formation of convex growths. The data of simultaneous thermal analysis revealed that the amount of desorbed hydrogen can be from 0.08 to 0.14%

    Behaviour of single-crystal nickel alloy in the conditions of high-temperature hydrogen corrosion

    No full text
    This study presents the results of the investigation of the behaviour of ZhS32-VI single-crystal nickel alloy in hydrogen environment or argon atmosphere at 850Β°C. The microstructure and chemical composition of corrosion deposits were studied by scanning electron microscopy and X-ray energy-dispersive analysis. It has been established that in argon containing an admixture of oxygen a dense scale rich in cobalt and nickel oxides is formed. At atmosphere containing 65% hydrogen and 35% argon an increased content of aluminum in the surface composition was noted. The influence of 100% hydrogen leads to segregation of tungsten and rhenium with the formation of convex growths. The data of simultaneous thermal analysis revealed that the amount of desorbed hydrogen can be from 0.08 to 0.14%

    Peculiarities of organomineral fertilizer granulation by the pelletizing method

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. ИспользованиС ΠΎΡ€Π³Π°Π½ΠΎΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈΠΉ позволяСт сущСствСнно ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΠ΄ΠΎΡ€ΠΎΠ΄ΠΈΠ΅ ΠΏΠΎΡ‡Π²Ρ‹ ΠΈ Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Π΅Π΅ агрохимичСскиС ΠΈ физичСскиС свойства. ИсслСдованиС ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹, связанныС с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ удобрСния Π² Π½Π΅ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅, Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ Π² Π²ΠΈΠ΄Π΅ сфСричСских Π³Ρ€Π°Π½ΡƒΠ» Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠΌ ΠΎΡ‚ 2,0 Π΄ΠΎ 5,5 ΠΌΠΌ Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΡ‚Π°Ρ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π»Π΅Π³ΠΊΠΎ использован Π² сСльском хозяйствС Π² условиях сплошного внСсСния ΡƒΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈΠΉ Π² ΠΏΠΎΡ‡Π²Ρƒ с использованиСм Π°Π³Ρ€ΠΎΡ‚Π΅Ρ…Π½ΠΈΠΊΠΈ. ЦСль: ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ процСсса гранулирования ΠΎΡ€Π³Π°Π½ΠΎΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ удобрСния ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ окатывания с ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ΄Ρ„ΠΎΡ€ΠΌΠΎΠ²ΠΊΠΎΠΉ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… тСхнологичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²; исслСдованиС вСроятности образования труднорастворимых соСдинСний ΠΏΡ€ΠΈ взаимодСйствии растворов ΡΠ²ΡΠ·ΡƒΡŽΡ‰ΠΈΡ… с ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°ΠΌΠΈ, входящими Π² состав ΠΎΡ€Π³Π°Π½ΠΎΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈΠΉ. ΠžΠ±ΡŠΠ΅ΠΊΡ‚: ΠΎΡ€Π³Π°Π½ΠΎΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ΅ ΡƒΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈΠ΅ биогумус с Π²Π»Π°ΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ 55–60 %. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: элСктронная ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ микроскопия (Hitachi Β«S-3400NΒ»), ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π°Ρ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ элСмСнтный состав биогумуса ΠΈ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ частиц удобрСния ΠΈ Π³ΠΎΡ‚ΠΎΠ²ΠΎΠ³ΠΎ Π³Ρ€Π°Π½ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°; Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ·, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΉ для установлСния элСмСнтного состава; тСрмодинамичСский Π°Π½Π°Π»ΠΈΠ·, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΉ для ΠΎΡ†Π΅Π½ΠΊΠΈ вСроятности протСкания Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ ΠΈ возмоТности образования труднорастворимых соСдинСний Π² Π³Ρ€Π°Π½ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ ΡƒΠ΄ΠΎΠ±Ρ€Π΅Π½ΠΈΠΈ, ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ прочности Π³Ρ€Π°Π½ΡƒΠ»; ситовой Π°Π½Π°Π»ΠΈΠ·, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΉ для опрСдСлСния грануломСтричСского состава, ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ опрСдСлСния статичСской прочности Π³Ρ€Π°Π½ΡƒΠ» Π½Π° ΠΏΡ€ΠΈΠ±ΠΎΡ€Π΅ Π˜ΠŸΠ“-1М. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ элСктронно-ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ микроскопа Π±Ρ‹Π»Π° ΠΈΠ·ΡƒΡ‡Π΅Π½Π° ΠΈ описана ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ частиц ΠΎΡ€Π³Π°Π½ΠΎΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ удобрСния – биогумус. УстановлСн элСмСнтный состав ΠΎΡ€Π³Π°Π½ΠΎΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ удобрСния: C, N, P, K, O, Fe, Al, Ca, Mg, Na, Cl, S, Ti. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ гранулирования ΠΎΡ€Π³Π°Π½ΠΎΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ удобрСния с ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ„ΠΎΡ€ΠΌΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ‡Π΅Ρ€Π΅Π· ячСйки Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ 4,0 ΠΌΠΌ: ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ 180 с, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° окатывания 25 Β°Π‘, ΡΡƒΡˆΠΊΠ° ΠΏΡ€ΠΈ 110 Β°Π‘ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 60 ΠΌΠΈΠ½ ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Ρ€Π΅Ρ‚ΡƒΡ€Π° 3 %. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ Π²ΠΈΠ΄ ΡΠ²ΡΠ·ΡƒΡŽΡ‰Π΅Π³ΠΎ раствора ΠΈ Π΅Π³ΠΎ содСрТаниС Π² тукосмСси, благодаря ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ с Π½Π°ΠΈΠ»ΡƒΡ‡ΡˆΠΈΠΌΠΈ Ρ‚ΠΎΠ²Π°Ρ€Π½Ρ‹ΠΌΠΈ характСристиками (статичСская ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ, Π²Ρ‹Ρ…ΠΎΠ΄ Ρ‚ΠΎΠ²Π°Ρ€Π½ΠΎΠΉ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ ΠΎΡ‚ 2,0 Π΄ΠΎ 5,5 ΠΌΠΌ). На основании тСрмодинамичСского Π°Π½Π°Π»ΠΈΠ·Π° установлСна Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ протСкания химичСских Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ ΡΠ²ΡΠ·ΡƒΡŽΡ‰ΠΈΠΌ раствором ΠΈ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°ΠΌΠΈ биогумуса, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ΡΡ труднорастворимыС соСдинСния (Mg3(PO4)2, Ca3(PO4)2, Fe3(PO4)2), ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ прочности Π³Ρ€Π°Π½ΡƒΠ». ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡ‹ΠΉ Π² качСствС ΡΠ²ΡΠ·ΡƒΡŽΡ‰Π΅Π³ΠΎ вСщСства Π²ΠΎΠ΄Π½Ρ‹ΠΉ раствор фосфата натрия позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π³Ρ€Π°Π½ΡƒΠ»Ρ‹, ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΠ΅ высокой статичСской ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ (51,1 Н/Π³Ρ€Π°Π½ΡƒΠ»Π°). Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ элСктронно-ΡΠΊΠ°Π½ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ микроскопии ΠΈΠ·ΡƒΡ‡Π΅Π½Π° ΠΈ описана структура ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΠΎΠ³ΠΎ Π³Ρ€Π°Π½ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ удобрСния.The relevance. The use of organomineral fertilizers makes it possible to substantially increase the fertility of soil and restore its agrochemical and physical properties. Research allows you to solve some problems associated with fertilizer application in untreated form, and the resulting product in the form of spherical granules measuring of 2,0 to 5,5 mm will have a high static strength and can be easily used in agriculture in conditions of continuous application of fertilizers to the soil with the use of agrotechnics. The main aim of the research is to study the organomineral fertilizer granulation by pelletizing with preliminary subforming and determination of optimal technological parameters; to investigate the probability of formation of sparingly soluble compounds in interaction of solutions of binders with components that are part of organomineral fertilizers. Objects: organomineral fertilizer biohumus with a moisture content of 55-60 %. Methods: electronic scanning microscopy (Hitachi Β«S-3400NΒ»), which allows determining the elemental composition of biohumus and evaluating the surface of fertilizer particles and the finished granular product; X-ray spectral analysis used to establish the elemental composition; the thermodynamic analysis necessary for estimation of probability of proceeding the reactions and possibility of formation of difficult-to-constructible compounds in the granular fertilizer, promoting increase in strength of granules; sieve analysis, used to determine the particle size distribution, and a method for determining the static strength of granules on an IPG-1M instrument. Results. Using the electron-scanning microscope, the surface of organic-mineral fertilizer particles - biohumus - was studied and described. The elemental composition of organomineral fertilizer is determined: C, N, P, K, O, Fe, Al, Ca, Mg, Na, Cl, S, Ti. Optimum parameters of the technology of organomineral fertilizer granulation with preliminary molding through cells with a diameter of 4,0 mm were determined: duration of 180 s, rolling temperature of 25 Β°C, drying at 110 Β°C for 60 min, and retention value of 3 %. The type and content of the binder solution in the fertilizer mixture is determined, which makes it possible to obtain the product with the best commercial characteristics (static strength, output of product fraction of 2,0 to 5,5 mm). Based on the thermodynamic analysis, the possibility of chemical reactions between the binder solution and biohumus components was established, resulting in formation of sparingly soluble compounds (Mg3(PO4)2, Ca3(PO4)2, Fe3(PO4)2), which increase the strength of the granules. The sodium phosphate aqueous solution used as a binder allows obtaining pellets having a high static strength (51,1 N/pellet). With the help of electron-scanning micros- copy, the structure of the obtained granular fertilizer was studied
    corecore