3 research outputs found

    Stechkin\u27s Problem for Differential Operators and Functionals of First and Second Orders

    No full text
    In this paper, we present the solution to Stechkin’s problem for differential operators and functionals of first and second orders on the class of functions that are defined on a finite interval and have bounded third derivative. Two related problems are discussed: (1) finding sharp constants in the Landau–Kolmogorov inequalities, and (2) optimal recovery of an operator with the help of a set of linear operators (or arbitrary single-valued mappings) on elements of some set that are given with an error

    Using different computing systems to solve the automatic cloud classification problem according to MODIS satellite data by probabilistic neural network

    No full text
    The relevance of the research is caused by the necessity to develop algorithms and software to classify the cloud types based on single-layer cloud on the satellite images received from MODIS spectral radiometer used in Terra and Aqua remote sensing Earth satellites with the usage of high-performance systems. The main aim of the study: effective and fast analysis of 5416-8120 single-layer cloud full scale satellite images received from MODIS spectral radiometer with the help of the probabilistic neural network detecting 27 cloud types. The methods used in the study. To carry out the task the authors used the methods of paralleling the processing, neurocomputing, computer vision and texture analysis algorithms, classification algorithms, technologies of high-performance processing for multi-core shared memory systems (OpenMP), graphics processing units (CUDA) and distributed systems (MPI).Β The results. The classifying procedure based on probabilistic neural model compares all the fragments from the given image with the patterns from the training set classified by experts. It needs to compare texture features of each fragment with features of some thousands patterns and therefore it leads to significant time costs. The algorithm allows splitting the given input into a set of small images that can be processed independently by some computational devices and devices supporting the processing of simultaneous tasks. The paper compares the performance of three approaches for parallel processing that are multi-thread computation based on multi-core central processing units (CPUs), multi-thread computation based on graphics processing units (GPUs) and distributed processing implemented by computational cluster. The latter uses worksharing between different processes with independent address spaces and the approach includes two methods for speed-up the processing based on data distribution and task sharing. Each approach was described in detail and its performance was estimated by analysis of MODIS' full scale image. It's shown that the usage of distributed processing or/and multi-thread GPU computation for performance of single-layer cloud classification task based on probabilistic neural model has significant performance advantages not only in comparison with the classic sequential algorithm but also with its multi-thread version for many-core CPUs

    Using different computing systems to solve the automatic cloud classification problem according to MODIS satellite data by probabilistic neural network

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования обусловлСна Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² ΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½Ρ‹Ρ… срСдств для классификации Ρ‚ΠΈΠΏΠΎΠ² облачности ΠΏΠΎ спутниковым снимкам однослойной облачности, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ спСктрорадиомСтра MODIS, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌΠΈ дистанционного зондирования Π—Π΅ΠΌΠ»ΠΈ Terra ΠΈ Aqua, ΠΈ Π²Ρ‹ΡΠΎΠΊΠΎΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… систСм. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹: эффСктивный ΠΈ быстрый Π°Π½Π°Π»ΠΈΠ· спутниковых снимков Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ 5416?8120 пиксСлСй однослойной облачности, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ спСктрорадиомСтра MODIS с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ вСроятностной Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти, для классификации облачности ΠΏΠΎ 27 Ρ‚ΠΈΠΏΠ°ΠΌ. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ исслСдования. Для достиТСния Ρ†Π΅Π»ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ распараллСливания вычислСний, нСйросСтСвыС вычислСния, ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ зрСния ΠΈ Π°Π½Π°Π»ΠΈΠ·Π° тСкстур, Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡ‹ классификации, Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π²Ρ‹ΡΠΎΠΊΠΎΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… вычислСний для многоядСрных систСм с ΠΎΠ±Ρ‰Π΅ΠΉ ΠΏΠ°ΠΌΡΡ‚ΡŒΡŽ (OpenMP), графичСских процСссоров (CUDA) ΠΈ распрСдСлСнных систСм (MPI). Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° классификации, основанная Π½Π° вСроятностной нСйросСтСвой ΠΌΠΎΠ΄Π΅Π»ΠΈ, сравниваСт Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ снимка с эталонами, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ Ρ€Π°Π½Π΅Π΅ ΠΈ классифицированными экспСртами. Для ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Π° изобраТСния Π΅Π³ΠΎ трСбуСтся ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ с тысячами эталонов, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ сущСствСнным Π²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ Π·Π°Ρ‚Ρ€Π°Ρ‚Π°ΠΌ. Π₯Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ вычислСний позволяСт Ρ€Π°Π·Π±ΠΈΡ‚ΡŒ Π²Ρ…ΠΎΠ΄Π½ΠΎΠΉ снимок Π½Π° нСсколько Π±ΠΎΠ»Π΅Π΅ ΠΌΠ΅Π»ΠΊΠΈΡ… ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ ΠΈΡ… нСзависимо Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… устройствах ΠΈΠ»ΠΈ устройствах, ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Ρ€Π°Π·Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ сравниваСтся ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Ρ‚Ρ€Π΅Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ Ρ€Π°ΡΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΈΠ²Π°Π½ΠΈΡŽ вычислСний: Π½Π° основС ΠΌΠ½ΠΎΠ³ΠΎΠΏΠΎΡ‚ΠΎΡ‡Π½Ρ‹Ρ… вычислСний, выполняСмых многоядСрными Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ процСссорами, ΠΌΠ½ΠΎΠ³ΠΎΠΏΠΎΡ‚ΠΎΡ‡Π½Ρ‹Ρ… вычислСний Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΡ€ΠΎΡ†Π΅ΡΡΠΎΡ€ΠΎΠ² графичСских ускоритСлСй ΠΈ распрСдСлСнной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π° Π±Π°Π·Π΅ кластСра. Для послСднСго случая, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ Ρ€Π°Π·Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΡƒΠΆΠ΅ Π½Π΅ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠΎΡ‚ΠΎΠΊΠ°ΠΌΠΈ, Π° процСссами с ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ адрСсными пространствами, Π±Ρ‹Π»ΠΎ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Π΄Π²Π° ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π° ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹: Π½Π° основС раздСлСния Π·Π°Π΄Π°Ρ‡ ΠΈ раздСлСния Π΄Π°Π½Π½Ρ‹Ρ…. Для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ описаниС ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ° Π΅Π³ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΏΠΎΠ»Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ снимка MODIS. Показано, Ρ‡Ρ‚ΠΎ использованиС распрСдСлСнной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΈ/ΠΈΠ»ΠΈ графичСских ускоритСлСй ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ классификации однослойной облачности, основанной Π½Π° вСроятностной Π½Π΅ΠΉΡ€ΠΎΠ½Π½ΠΎΠΉ сСти, ΠΈΠΌΠ΅Π΅Ρ‚ сущСствСнноС прСимущСство ΠΏΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с классичСским Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠΌ, Π½ΠΎ ΠΈ Π΅Π³ΠΎ ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠ΅ΠΉ для многоядСрных Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… процСссоров.The relevance of the research is caused by the necessity to develop algorithms and software to classify the cloud types based on single-layer cloud on the satellite images received from MODIS spectral radiometer used in Terra and Aqua remote sensing Earth satellites with the usage of high-performance systems. The main aim of the study: effective and fast analysis of 5416-8120 single-layer cloud full scale satellite images received from MODIS spectral radiometer with the help of the probabilistic neural network detecting 27 cloud types. The methods used in the study. To carry out the task the authors used the methods of paralleling the processing, neurocomputing, computer vision and texture analysis algorithms, classification algorithms, technologies of high-performance processing for multi-core shared memory systems (OpenMP), graphics processing units (CUDA) and distributed systems (MPI). The results. The classifying procedure based on probabilistic neural model compares all the fragments from the given image with the patterns from the training set classified by experts. It needs to compare texture features of each fragment with features of some thousands patterns and therefore it leads to significant time costs. The algorithm allows splitting the given input into a set of small images that can be processed independently by some computational devices and devices supporting the processing of simultaneous tasks. The paper compares the performance of three approaches for parallel processing that are multi-thread computation based on multi-core central processing units (CPUs), multi-thread computation based on graphics processing units (GPUs) and distributed processing implemented by computational cluster. The latter uses worksharing between different processes with independent address spaces and the approach includes two methods for speed-up the processing based on data distribution and task sharing. Each approach was described in detail and its performance was estimated by analysis of MODIS' full scale image. It's shown that the usage of distributed processing or/and multi-thread GPU computation for performance of single-layer cloud classification task based on probabilistic neural model has significant performance advantages not only in comparison with the classic sequential algorithm but also with its multi-thread version for many-core CPUs
    corecore