3 research outputs found
Stechkin\u27s Problem for Differential Operators and Functionals of First and Second Orders
In this paper, we present the solution to Stechkinβs problem for differential operators and functionals of first and second orders on the class of functions that are defined on a finite interval and have bounded third derivative. Two related problems are discussed: (1) finding sharp constants in the LandauβKolmogorov inequalities, and (2) optimal recovery of an operator with the help of a set of linear operators (or arbitrary single-valued mappings) on elements of some set that are given with an error
Using different computing systems to solve the automatic cloud classification problem according to MODIS satellite data by probabilistic neural network
The relevance of the research is caused by the necessity to develop algorithms and software to classify the cloud types based on single-layer cloud on the satellite images received from MODIS spectral radiometer used in Terra and Aqua remote sensing Earth satellites with the usage of high-performance systems. The main aim of the study: effective and fast analysis of 5416-8120 single-layer cloud full scale satellite images received from MODIS spectral radiometer with the help of the probabilistic neural network detecting 27 cloud types. The methods used in the study. To carry out the task the authors used the methods of paralleling the processing, neurocomputing, computer vision and texture analysis algorithms, classification algorithms, technologies of high-performance processing for multi-core shared memory systems (OpenMP), graphics processing units (CUDA) and distributed systems (MPI).Β The results. The classifying procedure based on probabilistic neural model compares all the fragments from the given image with the patterns from the training set classified by experts. It needs to compare texture features of each fragment with features of some thousands patterns and therefore it leads to significant time costs. The algorithm allows splitting the given input into a set of small images that can be processed independently by some computational devices and devices supporting the processing of simultaneous tasks. The paper compares the performance of three approaches for parallel processing that are multi-thread computation based on multi-core central processing units (CPUs), multi-thread computation based on graphics processing units (GPUs) and distributed processing implemented by computational cluster. The latter uses worksharing between different processes with independent address spaces and the approach includes two methods for speed-up the processing based on data distribution and task sharing. Each approach was described in detail and its performance was estimated by analysis of MODIS' full scale image. It's shown that the usage of distributed processing or/and multi-thread GPU computation for performance of single-layer cloud classification task based on probabilistic neural model has significant performance advantages not only in comparison with the classic sequential algorithm but also with its multi-thread version for many-core CPUs
Using different computing systems to solve the automatic cloud classification problem according to MODIS satellite data by probabilistic neural network
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΈ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΡΡ
ΡΡΠ΅Π΄ΡΡΠ² Π΄Π»Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΠΈΠΏΠΎΠ² ΠΎΠ±Π»Π°ΡΠ½ΠΎΡΡΠΈ ΠΏΠΎ ΡΠΏΡΡΠ½ΠΈΠΊΠΎΠ²ΡΠΌ ΡΠ½ΠΈΠΌΠΊΠ°ΠΌ ΠΎΠ΄Π½ΠΎΡΠ»ΠΎΠΉΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΠ½ΠΎΡΡΠΈ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠ°Π΄ΠΈΠΎΠΌΠ΅ΡΡΠ° MODIS, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΠΎΠ³ΠΎ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ°ΠΌΠΈ Π΄ΠΈΡΡΠ°Π½ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π·ΠΎΠ½Π΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΠ΅ΠΌΠ»ΠΈ Terra ΠΈ Aqua, ΠΈ Π²ΡΡΠΎΠΊΠΎΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ. Π¦Π΅Π»Ρ ΡΠ°Π±ΠΎΡΡ: ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠΉ ΠΈ Π±ΡΡΡΡΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠΏΡΡΠ½ΠΈΠΊΠΎΠ²ΡΡ
ΡΠ½ΠΈΠΌΠΊΠΎΠ² ΡΠ°Π·ΠΌΠ΅ΡΠ°ΠΌΠΈ 5416?8120 ΠΏΠΈΠΊΡΠ΅Π»Π΅ΠΉ ΠΎΠ΄Π½ΠΎΡΠ»ΠΎΠΉΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΠ½ΠΎΡΡΠΈ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠ°Π΄ΠΈΠΎΠΌΠ΅ΡΡΠ° MODIS Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ½ΠΎΠΉ Π½Π΅ΠΉΡΠΎΠ½Π½ΠΎΠΉ ΡΠ΅ΡΠΈ, Π΄Π»Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΎΠ±Π»Π°ΡΠ½ΠΎΡΡΠΈ ΠΏΠΎ 27 ΡΠΈΠΏΠ°ΠΌ. ΠΠ΅ΡΠΎΠ΄Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΠ»Ρ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅Π»ΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Ρ ΡΠ°ΡΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΈΠ²Π°Π½ΠΈΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ, Π½Π΅ΠΉΡΠΎΡΠ΅ΡΠ΅Π²ΡΠ΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ, ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π·ΡΠ΅Π½ΠΈΡ ΠΈ Π°Π½Π°Π»ΠΈΠ·Π° ΡΠ΅ΠΊΡΡΡΡ, Π°Π»Π³ΠΎΡΠΈΡΠΌΡ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ, ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π²ΡΡΠΎΠΊΠΎΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΡΡ
Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ Π΄Π»Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠ΄Π΅ΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ Ρ ΠΎΠ±ΡΠ΅ΠΉ ΠΏΠ°ΠΌΡΡΡΡ (OpenMP), Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΡΠΎΠ² (CUDA) ΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ (MPI). Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΠΎΡΠ΅Π΄ΡΡΠ° ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½Π°Ρ Π½Π° Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ½ΠΎΠΉ Π½Π΅ΠΉΡΠΎΡΠ΅ΡΠ΅Π²ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΡΡΠ°Π²Π½ΠΈΠ²Π°Π΅Ρ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΡ ΡΠ½ΠΈΠΌΠΊΠ° Ρ ΡΡΠ°Π»ΠΎΠ½Π°ΠΌΠΈ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌΠΈ ΡΠ°Π½Π΅Π΅ ΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ ΡΠΊΡΠΏΠ΅ΡΡΠ°ΠΌΠΈ. ΠΠ»Ρ ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠ° ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ Π΅Π³ΠΎ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΡΡΠ°Π²Π½ΠΈΡΡ Ρ ΡΡΡΡΡΠ°ΠΌΠΈ ΡΡΠ°Π»ΠΎΠ½ΠΎΠ², ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌ Π²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌ Π·Π°ΡΡΠ°ΡΠ°ΠΌ. Π₯Π°ΡΠ°ΠΊΡΠ΅Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ°Π·Π±ΠΈΡΡ Π²Ρ
ΠΎΠ΄Π½ΠΎΠΉ ΡΠ½ΠΈΠΌΠΎΠΊ Π½Π° Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π±ΠΎΠ»Π΅Π΅ ΠΌΠ΅Π»ΠΊΠΈΡ
ΠΈ ΠΎΠ±ΡΠ°Π±ΠΎΡΠ°ΡΡ ΠΈΡ
Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎ Π½Π° ΡΠ°Π·Π½ΡΡ
Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΡΡΡΠΎΠΉΡΡΠ²Π°Ρ
ΠΈΠ»ΠΈ ΡΡΡΡΠΎΠΉΡΡΠ²Π°Ρ
, ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°ΡΡΠΈΡ
ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΡΠ°Π·Π½ΡΡ
Π·Π°Π΄Π°Ρ. Π ΡΠ°Π±ΠΎΡΠ΅ ΡΡΠ°Π²Π½ΠΈΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΡΠ΅Ρ
ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ΠΎΠ² ΠΊ ΡΠ°ΡΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΠΈΠ²Π°Π½ΠΈΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ: Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ½ΠΎΠ³ΠΎΠΏΠΎΡΠΎΡΠ½ΡΡ
Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ, Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΠΌΡΡ
ΠΌΠ½ΠΎΠ³ΠΎΡΠ΄Π΅ΡΠ½ΡΠΌΠΈ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠΎΡΠ°ΠΌΠΈ, ΠΌΠ½ΠΎΠ³ΠΎΠΏΠΎΡΠΎΡΠ½ΡΡ
Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ Π²Π½ΡΡΡΠΈ ΠΌΡΠ»ΡΡΠΈΠΏΡΠΎΡΠ΅ΡΡΠΎΡΠΎΠ² Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠΊΠΎΡΠΈΡΠ΅Π»Π΅ΠΉ ΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π½Π° Π±Π°Π·Π΅ ΠΊΠ»Π°ΡΡΠ΅ΡΠ°. ΠΠ»Ρ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π³ΠΎ ΡΠ»ΡΡΠ°Ρ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π·Π°Π΄Π°ΡΠΈ ΡΠ°Π·Π΄Π΅Π»ΡΡΡΡΡ ΡΠΆΠ΅ Π½Π΅ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠΎΡΠΎΠΊΠ°ΠΌΠΈ, Π° ΠΏΡΠΎΡΠ΅ΡΡΠ°ΠΌΠΈ Ρ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΠΌΠΈ Π°Π΄ΡΠ΅ΡΠ½ΡΠΌΠΈ ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π°ΠΌΠΈ, Π±ΡΠ»ΠΎ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ Π΄Π²Π° ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ: Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ ΠΈ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π°Π½Π½ΡΡ
. ΠΠ»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²Π°ΡΠΈΠ°Π½ΡΠ° ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Ρ Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΈ ΠΎΡΠ΅Π½ΠΊΠ° Π΅Π³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΠΏΠΎΠ»Π½ΠΎΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ½ΠΈΠΌΠΊΠ° MODIS. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΈ/ΠΈΠ»ΠΈ Π³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠΊΠΎΡΠΈΡΠ΅Π»Π΅ΠΉ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°ΡΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΎΠ΄Π½ΠΎΡΠ»ΠΎΠΉΠ½ΠΎΠΉ ΠΎΠ±Π»Π°ΡΠ½ΠΎΡΡΠΈ, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π½Π° Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ½ΠΎΠΉ Π½Π΅ΠΉΡΠΎΠ½Π½ΠΎΠΉ ΡΠ΅ΡΠΈ, ΠΈΠΌΠ΅Π΅Ρ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²ΠΎ ΠΏΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠΌ, Π½ΠΎ ΠΈ Π΅Π³ΠΎ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΠ΅ΠΉ Π΄Π»Ρ ΠΌΠ½ΠΎΠ³ΠΎΡΠ΄Π΅ΡΠ½ΡΡ
ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΡΠΎΠ².The relevance of the research is caused by the necessity to develop algorithms and software to classify the cloud types based on single-layer cloud on the satellite images received from MODIS spectral radiometer used in Terra and Aqua remote sensing Earth satellites with the usage of high-performance systems. The main aim of the study: effective and fast analysis of 5416-8120 single-layer cloud full scale satellite images received from MODIS spectral radiometer with the help of the probabilistic neural network detecting 27 cloud types. The methods used in the study. To carry out the task the authors used the methods of paralleling the processing, neurocomputing, computer vision and texture analysis algorithms, classification algorithms, technologies of high-performance processing for multi-core shared memory systems (OpenMP), graphics processing units (CUDA) and distributed systems (MPI). The results. The classifying procedure based on probabilistic neural model compares all the fragments from the given image with the patterns from the training set classified by experts. It needs to compare texture features of each fragment with features of some thousands patterns and therefore it leads to significant time costs. The algorithm allows splitting the given input into a set of small images that can be processed independently by some computational devices and devices supporting the processing of simultaneous tasks. The paper compares the performance of three approaches for parallel processing that are multi-thread computation based on multi-core central processing units (CPUs), multi-thread computation based on graphics processing units (GPUs) and distributed processing implemented by computational cluster. The latter uses worksharing between different processes with independent address spaces and the approach includes two methods for speed-up the processing based on data distribution and task sharing. Each approach was described in detail and its performance was estimated by analysis of MODIS' full scale image. It's shown that the usage of distributed processing or/and multi-thread GPU computation for performance of single-layer cloud classification task based on probabilistic neural model has significant performance advantages not only in comparison with the classic sequential algorithm but also with its multi-thread version for many-core CPUs