90 research outputs found
Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n
Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive
π
+
electroproduction reaction
γ
∗
p
→
n
π
+
. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is
1.1
<
W
<
3
GeV and
1
<
Q
2
<
6
GeV
2
. Results were obtained for about 6000 bins in
W
,
Q
2
,
cos
(
θ
∗
)
, and
ϕ
∗
. Except at forward angles, very large target-spin asymmetries are observed over the entire
W
region. Reasonable agreement is found with phenomenological fits to previous data for
W
<
1.6
GeV, but very large differences are seen at higher values of
W
. A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of
Q
2
, for resonances with masses as high as 2.4 GeV
Towards a resolution of the proton form factor problem: new electron and positron scattering data
There is a significant discrepancy between the values of the proton electric
form factor, , extracted using unpolarized and polarized electron
scattering. Calculations predict that small two-photon exchange (TPE)
contributions can significantly affect the extraction of from the
unpolarized electron-proton cross sections. We determined the TPE contribution
by measuring the ratio of positron-proton to electron-proton elastic scattering
cross sections using a simultaneous, tertiary electron-positron beam incident
on a liquid hydrogen target and detecting the scattered particles in the
Jefferson Lab CLAS detector. This novel technique allowed us to cover a wide
range in virtual photon polarization () and momentum transfer
() simultaneously, as well as to cancel luminosity-related systematic
errors. The cross section ratio increases with decreasing at . This measurement is consistent with the size of the form
factor discrepancy at GeV and with hadronic calculations
including nucleon and intermediate states, which have been shown to
resolve the discrepancy up to GeV.Comment: 6 pages, 4 figures, submitted to PR
Photoproduction of K+K− meson pairs on the proton
The exclusive reaction γp→pK+K− was studied in the photon energy range 3.0–3.8 GeV and momentum transfer range 0.6<−t<1.3 GeV2. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was approximately 20 pb−1. The reaction was isolated by detecting the K+ and the proton in CLAS, and reconstructing the K− via the missing-mass technique. Moments of the dikaon decay angular distributions were extracted from the experimental data. Besides the dominant contribution of the ϕ meson in the P wave, evidence for S−P interference was found. The differential production cross sections dσ/dt for individual waves in the mass range of the ϕ resonance were extracted and compared to predictions of a Regge-inspired model. This is the first time the t-dependent cross section of the S-wave contribution to the elastic K+K− photoproduction has been measured
Beam-target helicity asymmetry for γ→n→→π−p in the N*resonance region
We report the first beam-target double-polarization asymmetries in the γ þ nðpÞ → π− þ pðpÞ reaction
spanning the nucleon resonance region from invariant mass W ¼ 1500 to 2300 MeV. Circularly polarized
photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the
CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been
extracted using three very different analyses that show excellent agreement, and these have been used to
deduce the E polarization observable for an effective neutron target. These results have been incorporated
into new partial wave analyses and have led to significant revisions for several γnN* resonance
photocouplings
Measurement of the Q2 dependence of the deuteron spin structure function g1 and its moments at low Q2 with CLAS
We measured the
g
1
spin structure function of the deuteron at low
Q
2
, where QCD can be approximated with chiral perturbation theory (
χ
PT
). The data cover the resonance region, up to an invariant mass of
W
≈
1.9
GeV
. The generalized Gerasimov-Drell-Hearn sum, the moment
Γ
d
1
and the spin polarizability
γ
d
0
are precisely determined down to a minimum
Q
2
of
0.02
GeV
2
for the first time, about 2.5 times lower than that of previous data. We compare them to several
χ
PT
calculations and models. These results are the first in a program of benchmark measurements of polarization observables in the
χ
PT
domain
Beam-target double-spin asymmetry in quasielastic electron scattering off the deuteron with CLAS
Background: The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron.
Purpose: The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in the deuteron ground state (due to the
D
-state admixture) and on the limits of the impulse approximation (IA) picture as it applies to measurements of spin-dependent observables like spin structure functions for bound nucleons. Information on this reaction can also be used to reduce systematic uncertainties on the determination of neutron form factors or deuteron polarization through quasielastic polarized electron scattering.
Method: We measured the beam-target double-spin asymmetry (
A
|
|
) for quasielastic electron scattering off the deuteron at several beam energies (
1.6
–
1.7
, 2.5, 4.2, and
5.6
–
5.8
GeV
), using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double-spin asymmetries were measured as a function of photon virtuality
Q
2
(
0.13
–
3.17
(
GeV
/
c
)
2
)
, missing momentum
(
p
m
=
0.0
–
0.5
GeV
/
c
)
, and the angle between the (inferred) spectator neutron and the momentum transfer direction
(
θ
n
q
)
.
Results: The results are compared with a recent model that includes final-state interactions (FSI) using a complete parametrization of nucleon-nucleon scattering, as well as a simplified model using the plane wave impulse approximation (PWIA). We find overall good agreement with both the PWIA and FSI expectations at low to medium missing momenta
(
p
m
≤
0.25
GeV
/
c
)
, including the change of the asymmetry due to the contribution of the deuteron
D
state at higher momenta. At the highest missing momenta, our data clearly agree better with the calculations including FSI.
Conclusions: Final-state interactions seem to play a lesser role for polarization observables in deuteron two-body electrodisintegration than for absolute cross sections. Our data, while limited in statistical power, indicate that PWIA models work reasonably well to understand the asymmetries at lower missing momenta. In turn, this information can be used to extract the product of beam and target polarization
(
P
b
P
t
)
from quasielastic electron-deuteron scattering, which is useful for measurements of spin observables in electron-neutron inelastic scattering. However, at the highest missing (neutron) momenta, FSI effects become important and must be accounted for
Cross Sections for the Exclusive Photon Electroproduction on the Proton and Generalized Parton Distributions
International audienceUnpolarized and beam-polarized fourfold cross sections ðd4σ=dQ2dxBdtdϕÞ for the ep → e0p0γreaction were measured using the CLAS detector and the 5.75-GeV polarized electron beam of theJefferson Lab accelerator, for 110 (Q2; xB; t) bins over the widest phase space ever explored in the valencequarkregion. Several models of generalized parton distributions (GPDs) describe the data well at most ofour kinematics. This increases our confidence that we understand the GPD H, expected to be the dominantcontributor to these observables. Through a leading-twist extraction of Compton form factors, these resultssupport the model predictions of a larger nucleon size at lower quark-momentum fraction xB
- …