110 research outputs found
Approximate Pure Nash Equilibria in Weighted Congestion Games: Existence, Efficient Computation, and Structure
We consider structural and algorithmic questions related to the Nash dynamics
of weighted congestion games. In weighted congestion games with linear latency
functions, the existence of (pure Nash) equilibria is guaranteed by potential
function arguments. Unfortunately, this proof of existence is inefficient and
computing equilibria is such games is a {\sf PLS}-hard problem. The situation
gets worse when superlinear latency functions come into play; in this case, the
Nash dynamics of the game may contain cycles and equilibria may not even exist.
Given these obstacles, we consider approximate equilibria as alternative
solution concepts. Do such equilibria exist? And if so, can we compute them
efficiently?
We provide positive answers to both questions for weighted congestion games
with polynomial latency functions by exploiting an "approximation" of such
games by a new class of potential games that we call -games. This allows
us to show that these games have -approximate equilibria, where is the
maximum degree of the latency functions. Our main technical contribution is an
efficient algorithm for computing O(1)-approximate equilibria when is a
constant. For games with linear latency functions, the approximation guarantee
is for arbitrarily small ; for
latency functions with maximum degree , it is . The
running time is polynomial in the number of bits in the representation of the
game and . As a byproduct of our techniques, we also show the
following structural statement for weighted congestion games with polynomial
latency functions of maximum degree : polynomially-long sequences of
best-response moves from any initial state to a -approximate
equilibrium exist and can be efficiently identified in such games as long as
is constant.Comment: 31 page
Multilevel Network Games
We consider a multilevel network game, where nodes can improve their
communication costs by connecting to a high-speed network. The nodes are
connected by a static network and each node can decide individually to become a
gateway to the high-speed network. The goal of a node is to minimize its
private costs, i.e., the sum (SUM-game) or maximum (MAX-game) of communication
distances from to all other nodes plus a fixed price if it
decides to be a gateway. Between gateways the communication distance is ,
and gateways also improve other nodes' distances by behaving as shortcuts. For
the SUM-game, we show that for , the price of anarchy is
and in this range equilibria always exist. In range
the price of anarchy is , and
for it is constant. For the MAX-game, we show that the
price of anarchy is either , for ,
or else . Given a graph with girth of at least , equilibria always
exist. Concerning the dynamics, both the SUM-game and the MAX-game are not
potential games. For the SUM-game, we even show that it is not weakly acyclic.Comment: An extended abstract of this paper has been accepted for publication
in the proceedings of the 10th International Conference on Web and Internet
Economics (WINE
Routing Games with Progressive Filling
Max-min fairness (MMF) is a widely known approach to a fair allocation of
bandwidth to each of the users in a network. This allocation can be computed by
uniformly raising the bandwidths of all users without violating capacity
constraints. We consider an extension of these allocations by raising the
bandwidth with arbitrary and not necessarily uniform time-depending velocities
(allocation rates). These allocations are used in a game-theoretic context for
routing choices, which we formalize in progressive filling games (PFGs).
We present a variety of results for equilibria in PFGs. We show that these
games possess pure Nash and strong equilibria. While computation in general is
NP-hard, there are polynomial-time algorithms for prominent classes of
Max-Min-Fair Games (MMFG), including the case when all users have the same
source-destination pair. We characterize prices of anarchy and stability for
pure Nash and strong equilibria in PFGs and MMFGs when players have different
or the same source-destination pairs. In addition, we show that when a designer
can adjust allocation rates, it is possible to design games with optimal strong
equilibria. Some initial results on polynomial-time algorithms in this
direction are also derived
Efficient computation of approximate pure Nash equilibria in congestion games
Congestion games constitute an important class of games in which computing an
exact or even approximate pure Nash equilibrium is in general {\sf
PLS}-complete. We present a surprisingly simple polynomial-time algorithm that
computes O(1)-approximate Nash equilibria in these games. In particular, for
congestion games with linear latency functions, our algorithm computes
-approximate pure Nash equilibria in time polynomial in the
number of players, the number of resources and . It also applies to
games with polynomial latency functions with constant maximum degree ;
there, the approximation guarantee is . The algorithm essentially
identifies a polynomially long sequence of best-response moves that lead to an
approximate equilibrium; the existence of such short sequences is interesting
in itself. These are the first positive algorithmic results for approximate
equilibria in non-symmetric congestion games. We strengthen them further by
proving that, for congestion games that deviate from our mild assumptions,
computing -approximate equilibria is {\sf PLS}-complete for any
polynomial-time computable
Network Investment Games with Wardrop Followers
We study a two-sided network investment game consisting of two sets of players, called providers and users. The game is set in two stages. In the first stage, providers aim to maximize their profit by investing in bandwidth of cloud computing services. The investments of the providers yield a set of usable services for the users. In the second stage, each user wants to process a task and therefore selects a bundle of services so as to minimize the total processing time. We assume the total processing time to be separable over the chosen services and the processing time of each service to depend on the utilization of the service and the installed bandwidth. We provide insights on how competition between providers affects the total costs of the users and show that every game on a series-parallel graph can be reduced to an equivalent single edge game when analyzing the set of subgame perfect Nash equilibria
Altruism in Atomic Congestion Games
This paper studies the effects of introducing altruistic agents into atomic
congestion games. Altruistic behavior is modeled by a trade-off between selfish
and social objectives. In particular, we assume agents optimize a linear
combination of personal delay of a strategy and the resulting increase in
social cost. Our model can be embedded in the framework of congestion games
with player-specific latency functions. Stable states are the Nash equilibria
of these games, and we examine their existence and the convergence of
sequential best-response dynamics. Previous work shows that for symmetric
singleton games with convex delays Nash equilibria are guaranteed to exist. For
concave delay functions we observe that there are games without Nash equilibria
and provide a polynomial time algorithm to decide existence for symmetric
singleton games with arbitrary delay functions. Our algorithm can be extended
to compute best and worst Nash equilibria if they exist. For more general
congestion games existence becomes NP-hard to decide, even for symmetric
network games with quadratic delay functions. Perhaps surprisingly, if all
delay functions are linear, then there is always a Nash equilibrium in any
congestion game with altruists and any better-response dynamics converges. In
addition to these results for uncoordinated dynamics, we consider a scenario in
which a central altruistic institution can motivate agents to act
altruistically. We provide constructive and hardness results for finding the
minimum number of altruists to stabilize an optimal congestion profile and more
general mechanisms to incentivize agents to adopt favorable behavior.Comment: 13 pages, 1 figure, includes some minor adjustment
Multi-unit Bilateral Trade
We characterise the set of dominant strategy incentive compatible (DSIC),
strongly budget balanced (SBB), and ex-post individually rational (IR)
mechanisms for the multi-unit bilateral trade setting. In such a setting there
is a single buyer and a single seller who holds a finite number k of identical
items. The mechanism has to decide how many units of the item are transferred
from the seller to the buyer and how much money is transferred from the buyer
to the seller. We consider two classes of valuation functions for the buyer and
seller: Valuations that are increasing in the number of units in possession,
and the more specific class of valuations that are increasing and submodular.
Furthermore, we present some approximation results about the performance of
certain such mechanisms, in terms of social welfare: For increasing submodular
valuation functions, we show the existence of a deterministic 2-approximation
mechanism and a randomised e/(1-e) approximation mechanism, matching the best
known bounds for the single-item setting
Strategic Facility Location with Clients that Minimize Total Waiting Time
We study a non-cooperative two-sided facility location game in which
facilities and clients behave strategically. This is in contrast to many other
facility location games in which clients simply visit their closest facility.
Facility agents select a location on a graph to open a facility to attract as
much purchasing power as possible, while client agents choose which facilities
to patronize by strategically distributing their purchasing power in order to
minimize their total waiting time. Here, the waiting time of a facility depends
on its received total purchasing power. We show that our client stage is an
atomic splittable congestion game, which implies existence, uniqueness and
efficient computation of a client equilibrium. Therefore, facility agents can
efficiently predict client behavior and make strategic decisions accordingly.
Despite that, we prove that subgame perfect equilibria do not exist in all
instances of this game and that their existence is NP-hard to decide. On the
positive side, we provide a simple and efficient algorithm to compute
3-approximate subgame perfect equilibria.Comment: To appear at the 37th AAAI Conference on Artificial Intelligence
(AAAI-23), full versio
Approximate Pure Nash Equilibria in Weighted Congestion Games
We study the existence of approximate pure Nash equilibria in weighted congestion games and develop techniques to obtain approximate potential functions that prove the existence of alpha-approximate pure Nash equilibria and the convergence of alpha-improvement steps. Specifically, we show how to obtain upper bounds for approximation factor alpha for a given class of cost functions. For example for concave cost functions the factor is at most 3/2, for quadratic cost functions it is at most 4/3, and for polynomial cost functions of maximal degree d it is at at most d + 1. For games with two players we obtain tight bounds which are as small as for example 1.054 in the case of quadratic cost functions
- …