3 research outputs found
MN Dra - In-the-Gap Dwarf Nova With Negative Superhumps
The multi-site photometric observations of MN Dra were made over 77 nights in
August-November, 2009. The total exposure was 433 hours. During this time the
binary underwent two superoutbursts and five normal outbursts. During the
course of first superoutburst period of positive superhumps decreased with
extremely large for SU UMa-like dwarf novae,
confirming known behavior of MN Dra [1]. Between the superoutbursts MN Dra
displayed negative superhumps. Their period changed cyclically around 0.096-day
value.Comment: 17TH European White Dwarf Workshop. AIP Conference Proceedings,
Volume 1273, pp. 320-323 (2010
First Detection of Two Superoutbursts during Rebrightening Phase of a WZ Sge-type Dwarf Nova: TCP J21040470+4631129
We report photometric and spectroscopic observations and analysis of the 2019
superoutburst of TCP J21040470+4631129. This object showed a 9-mag
superoutburst with early superhumps and ordinary superhumps, which are the
features of WZ Sge-type dwarf novae. Five rebrightenings were observed after
the main superoutburst. The spectra during the post-superoutburst stage showed
the Balmer, He I and possible sodium doublet features. The mass ratio is
derived as 0.0880(9) from the period of the superhump. During the third and
fifth rebrightenings, growing superhumps and superoutbursts were observed,
which have never been detected during a rebrightening phase among WZ Sge-type
dwarf novae with multiple rebrightenings. To induce a superoutburst during the
brightening phase, the accretion disk was needed to expand beyond the 3:1
resonance radius of the system again after the main superoutburst. These
peculiar phenomena can be explained by the enhanced viscosity and large radius
of the disk suggested by the higher luminosity and the presence of late-stage
superhumps during the post-superoutburst stage, plus by more mass supply from
the cool mass reservoir and/or from the secondary because of the enhanced mass
transfer than those of other WZ Sge-type dwarf novae.Comment: 13 pages, 10 figures, accepted for publication in PAS
First detection of two superoutbursts during rebrightening phase of a WZ Sge-type Dwarf Nova : TCP J21040470+4631129
We report on photometric and spectroscopic observations and analysis of the 2019 superoutburst of TCP J21040470+4631129. This object showed a 9 mag superoutburst with early superhumps and ordinary superhumps, which are the features of WZ Sge-type dwarf novae. Five rebrightenings were observed after the main superoutburst. The spectra during the post-superoutburst stage showed Balmer, He I, and possible sodium doublet features. The mass ratio is derived as 0.0880(9) from the period of the superhump. During the third and fifth rebrightenings, growing superhumps and superoutbursts were observed, which have never been detected during a rebrightening phase among WZ Sge-type dwarf novae with multiple rebrightenings. To induce a superoutburst during the brightening phase, the accretion disk needs to have expanded beyond the 3 : 1 resonance radius of the system again after the main superoutburst. These peculiar phenomena can be explained by the enhanced viscosity and large radius of the accretion disk suggested by the higher luminosity and the presence of late-stage superhumps during the post-superoutburst stage, plus by more mass supply from the cool mass reservoir and/or from the secondary because of the enhanced mass transfer than those of other WZ Sge-type dwarf novae.peer-reviewe