48 research outputs found
Anomalous thickness-dependent electrical conductivity in van der Waals layered transition metal halide, Nb<sub>3</sub>Cl<sub>8</sub>
Understanding the electronic transport properties of layered, van der Waals transition metal halides (TMHs) and chalcogenides is a highly active research topic today. Of particular interest is the evolution of those properties with changing thickness as the 2D limit is approached. Here, we present the electrical conductivity of exfoliated single crystals of the TMH, cluster magnet, Nb3Cl8, over a wide range of thicknesses both with and without hexagonal boron nitride (hBN) encapsulation. The conductivity is found to increase by more than three orders of magnitude when the thickness is decreased from 280 ”m to 5 nm, at 300 K. At low temperatures and below ~50 nm, the conductance becomes thickness independent, implying surface conduction is dominating. Temperature dependent conductivity measurements indicate Nb3Cl8 is an insulator, however, the effective activation energy decreases from a bulk value of 310 meV to 140 meV by 5 nm. X-ray photoelectron spectroscopy (XPS) shows mild surface oxidation in devices without hBN capping, however, no significant difference in transport is observed when compared to the capped devices, implying the thickness dependent transport behavior is intrinsic to the material. A conduction mechanism comprised of a higher conductivity surface channel in parallel with a lower conductivity interlayer channel is discussed
Recommended from our members
On the electronic properties of a single dislocation
A detailed knowledge of the electronic properties of individual dislocations is necessary for next generation nanodevices. Dislocations are fundamental crystal defects controlling the growth of different nanostructures (nanowires) or appear during device processing. We present a method to record electric properties of single dislocations in thin silicon layers. Results of measurements on single screw dislocations are shown for the first time. Assuming a cross-section area of the dislocation core of about 1 nm2, the current density through a single dislocation is J = 3.8 Ă 1012 A/cm2 corresponding to a resistivity of Ï â
1 à 10-8 Ω cm. This is about eight orders of magnitude lower than the surrounding silicon matrix. The reason of the supermetallic behavior is the high strain in the cores of the dissociated dislocations modifying the local band structure resulting in high conductive carrier channels along defect cores
Examination of the Epidermis by the Strip Method II. Biometric Data on Regeneration of the Human Epidermis1
Digitalitzat per Artypla
Die Gesundheitslehre nach dem neuesten Standpunkte der Physiologie
populÀr dargest. von Wilhelm Sklare