45 research outputs found

    Consensus statement from the 2014 International Microdialysis Forum.

    Get PDF
    Microdialysis enables the chemistry of the extracellular interstitial space to be monitored. Use of this technique in patients with acute brain injury has increased our understanding of the pathophysiology of several acute neurological disorders. In 2004, a consensus document on the clinical application of cerebral microdialysis was published. Since then, there have been significant advances in the clinical use of microdialysis in neurocritical care. The objective of this review is to report on the International Microdialysis Forum held in Cambridge, UK, in April 2014 and to produce a revised and updated consensus statement about its clinical use including technique, data interpretation, relationship with outcome, role in guiding therapy in neurocritical care and research applications.We gratefully acknowledge financial support for participants as follows: P.J.H. - National Institute for Health Research (NIHR) Professorship and the NIHR Biomedical Research Centre, Cambridge; I.J. – Medical Research Council (G1002277 ID 98489); A. H. - Medical Research Council, Royal College of Surgeons of England; K.L.H.C. - NIHR Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme); M.G.B. - Wellcome Trust Dept Health Healthcare Innovation Challenge Fund (HICF-0510-080); L. H. - The Swedish Research Council, VINNOVA and Uppsala Berzelii Technology Centre for Neurodiagnostics; S. M. - Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico; D.K.M. - NIHR Senior Investigator Award to D.K.M., NIHR Cambridge Biomedical Research Centre (Neuroscience Theme), FP7 Program of the European Union; M. O. - Swiss National Science Foundation and the Novartis Foundation for Biomedical Research; J.S. - Fondo de Investigación Sanitaria (Instituto de Salud Carlos III) (PI11/00700) co-financed by the European Regional Development; M.S. – NIHR University College London Hospitals Biomedical Research Centre; N. S. - Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00134-015-3930-

    Consensus statement from the 2014 International Microdialysis Forum

    Get PDF
    This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00134-015-3930-yMicrodialysis enables the chemistry of the extracellular interstitial space to be measured. Use of this technique in patients with acute brain injury has increased our understanding of the pathophysiology of several acute neurological disorders. In 2004 a consensus document on the clinical application of cerebral microdialysis was published. Since then there have been significant advances in the clinical use of microdialysis in neurocritical care. The objective of this review is to report on the International Microdialysis Forum held in Cambridge, UK, in April 2014 and to produce a revised and updated consensus statement about its clinical use including technique, data interpretation, relationship with outcome, role in guiding therapy in neurocritical care and research applications.We gratefully acknowledge financial support for participants as follows: P.J.H. - National Institute for Health Research (NIHR) Professorship and the NIHR Biomedical Research Centre, Cambridge; I.J. ? Medical Research Council (G1002277 ID 98489); A. H. - Medical Research Council, Royal College of Surgeons of England; K.L.H.C. - NIHR Biomedical Research Centre, Cambridge (Neuroscience Theme; Brain Injury and Repair Theme); M.G.B. - Wellcome Trust Dept Health Healthcare Innovation Challenge Fund (HICF-0510-080); L. H. - The Swedish Research Council, VINNOVA and Uppsala Berzelii Technology Centre for Neurodiagnostics; S. M. - Fondazione IRCCS C? Granda Ospedale Maggiore Policlinico; D.K.M. - NIHR Senior Investigator Award to D.K.M., NIHR Cambridge Biomedical Research Centre (Neuroscience Theme), FP7 Program of the European Union; M. O. - Swiss National Science Foundation and the Novartis Foundation for Biomedical Research; J.S. - Fondo de Investigaci?n Sanitaria (Instituto de Salud Carlos III) (PI11/00700) co-financed by the European Regional Development; M.S. ? NIHR University College London Hospitals Biomedical Research Centre; N. S. - Fondazione IRCCS C? Granda Ospedale Maggiore Policlinico

    Effects of prostacyclin on cerebral blood flow and vasospasm after subarachnoid hemorrhage:randomized, pilot trial

    No full text
    Delayed ischemic neurological deficits (DINDs) are a major contributing factor for poor outcome in patients with subarachnoid hemorrhage. In this trial, we investigated the therapeutic potential of prostacyclin, an endogen substance with known effect on vascular tone and blood flow regulation, on factors related to DIND

    The effects of continuous prostacyclin infusion on regional blood flow and cerebral vasospasm following subarachnoid haemorrhage:study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: One of the main causes of mortality and morbidity following subarachnoid haemorrhage (SAH) is the development of cerebral vasospasm, a frequent complication arising in the weeks after the initial bleeding. Despite extensive research, to date no effective treatment of vasospasm exists. Prostacyclin is a potent vasodilator and inhibitor of platelet aggregation. In vitro models have shown a relaxing effect of prostacyclin after induced contraction in cerebral arteries, and a recent pilot trial showed a positive effect on cerebral vasospasm in a clinical setting. No randomised, clinical trials have been conducted, investigating the possible pharmacodynamic effects of prostacyclin on the human brain following SAH. METHODS: This trial is a single-centre, randomised, placebo-controlled, parallel group, blinded, clinical, pilot trial. A total of 90 patients with SAH will be randomised to one of three intervention arms: epoprostenol 1 ng/kg/min, epoprostenol 2 ng/kg/min or placebo in addition to standard treatment. Trial medication will start day 5 after SAH and continue to day 10. The primary outcome measure is changes in regional cerebral blood flow from baseline in the arterial territories of the anterior cerebral artery, medial cerebral artery and the posterior cerebral artery, measured by CT perfusion scan. The secondary outcomes will be vasospasm measured by CT angiography, ischaemic parameters measured by brain microdialysis, flow velocities in the medial cerebral artery, clinical parameters and outcome (Glasgow Outcome Scale) at 3 months. TRIAL REGISTRATION: Clinicaltrials.gov NCT01447095
    corecore