9,646 research outputs found
Do the Rich Save More?
The issue of whether higher lifetime income households save a larger fraction of their income is an important factor in the evaluation of tax and macroeconomic policy. Despite an outpouring of research on this topic in the 1950s and 1960s, the question remains unresolved and has since received little attention. This paper revisits the issue, using new empirical methods and the Panel Study on Income Dynamics, the Survey of Consumer Finances, and the Consumer Expenditure Survey. We first consider the various ways in which life cycle models can be altered to generate differences in saving rates by income groups: differences in Social Security benefits, different time preference rates, non-homothetic preferences, bequest motives, uncertainty, and consumption floors. Using a variety of instruments for lifetime income, we find a strong positive relationship between personal saving rates and lifetime income. The data do not support theories relying on time preference rates, non-homothetic preferences, or variations in Social Security benefits. Instead, the evidence is consistent with models in which precautionary saving and bequest motives drive variations in saving rates across income groups. Finally, we illustrate how models that assume a constant rate of saving across income groups can yield erroneous predictions.
Direct UV observations of the circumstellar envelope of alpha Orionis
Observations were made in the IUE LWP camera, low dispersion mode, with alpha Ori being offset various distances from the center of the Long Wavelength Large Aperture along its major axis. Signal was acquired at all offset positions and is comprised of unequal components of background/dark counts, telescope-scattered light, and scattered light emanating from the extended circumstellar shell. The star is known from optical and infrared observations to possess an extended, arc-minute sized, shell of cool material. Attempts to observe this shell with the IUE are described, although the deconvolution of the stellar signal from the telescope scattered light requires further calibration effort
Localization dynamics of fluids in random confinement
The dynamics of two-dimensional fluids confined within a random matrix of
obstacles is investigated using both colloidal model experiments and molecular
dynamics simulations. By varying fluid and matrix area fractions in the
experiment, we find delocalized tracer particle dynamics at small matrix area
fractions and localized motion of the tracers at high matrix area fractions. In
the delocalized region, the dynamics is subdiffusive at intermediate times, and
diffusive at long times, while in the localized regime, trapping in finite
pockets of the matrix is observed. These observations are found to agree with
the simulation of an ideal gas confined in a weakly correlated matrix. Our
results show that Lorentz gas systems with soft interactions are exhibiting a
smoothening of the critical dynamics and consequently a rounded
delocalization-to-localization transition.Comment: 5 pages, 3 figure
Do the Rich Save More?
The question of whether higher–lifetime income households save a larger fraction of their income was the subject of much debate in the 1950s and 1960s, and while not resolved, it remains central to the evaluation of tax and macroeconomic policies. We resolve this long‐standing question using new empirical methods applied to the Panel Study of Income Dynamics, the Survey of Consumer Finances, and the Consumer Expenditure Survey. We find a strong positive relationship between saving rates and lifetime income and a weaker but still positive relationship between the marginal propensity to save and lifetime income. There is little support for theories that seek to explain these positive correlations by relying solely on time preference rates, nonhomothetic preferences, or variations in Social Security benefits. There is more support for models emphasizing uncertainty with respect to income and health expenses, bequest motives, and asset‐based means testing or behavioral factors causing minimal saving rates among low‐income households
Very High Resolution Solar X-ray Imaging Using Diffractive Optics
This paper describes the development of X-ray diffractive optics for imaging
solar flares with better than 0.1 arcsec angular resolution. X-ray images with
this resolution of the \geq10 MK plasma in solar active regions and solar
flares would allow the cross-sectional area of magnetic loops to be resolved
and the coronal flare energy release region itself to be probed. The objective
of this work is to obtain X-ray images in the iron-line complex at 6.7 keV
observed during solar flares with an angular resolution as fine as 0.1 arcsec -
over an order of magnitude finer than is now possible. This line emission is
from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma
at temperatures in excess of \approx10 MK. It provides information on the flare
morphology, the iron abundance, and the distribution of the hot plasma.
Studying how this plasma is heated to such high temperatures in such short
times during solar flares is of critical importance in understanding these
powerful transient events, one of the major objectives of solar physics. We
describe the design, fabrication, and testing of phase zone plate X-ray lenses
with focal lengths of \approx100 m at these energies that would be capable of
achieving these objectives. We show how such lenses could be included on a
two-spacecraft formation-flying mission with the lenses on the spacecraft
closest to the Sun and an X-ray imaging array on the second spacecraft in the
focal plane \approx100 m away. High resolution X-ray images could be obtained
when the two spacecraft are aligned with the region of interest on the Sun.
Requirements and constraints for the control of the two spacecraft are
discussed together with the overall feasibility of such a formation-flying
mission
Io: IUE observations of its atmosphere and the plasma torus
Two of the main components of the atmosphere of Io, neutral oxygen and sulfur, were detected with the IUE. Four observations yield brightnesses that are similar, regardless of whether the upstream or the downstream sides of the torus plasma flow around Io is observed. A simple model requires the emissions to be produced by the interaction of O and S columns in the exospheric range with 2 eV electrons. Cooling of the 5 eV torus electrons is required prior to their interaction with the atmosphere of Io. Inconsistencies in the characteristics of the spectra that cannot be accounted for in this model require further analysis with improved atomic data. The Io plasma torus was monitored with the IUE. The long-term stability of the warm torus is established. The observed brightnesses were analyzed using a model of the torus, and variations of less than 30 percent in the composition are observed, the quantitative results being model dependent
Can we predict the duration of an interglacial?
Differences in the duration of interglacials have long been apparent in palaeoclimate records of the Late and Middle Pleistocene. However, a systematic evaluation of such differences has been hampered by the lack of a metric that can be applied consistently through time and by difficulties in separating the local from the global component in various proxies. This, in turn, means that a theoretical framework with predictive power for interglacial duration has remained elusive. Here we propose that the interval between the terminal oscillation of the bipolar seesaw and three thousand years (kyr) before its first major reactivation provides an estimate that approximates the length of the sea-level highstand, a measure of interglacial duration. We apply this concept to interglacials of the last 800 kyr by using a recently-constructed record of interhemispheric variability. The onset of interglacials occurs within 2 kyr of the boreal summer insolation maximum/precession minimum and is consistent with the canonical view of Milankovitch forcing pacing the broad timing of interglacials. Glacial inception always takes place when obliquity is decreasing and never after the obliquity minimum. The phasing of precession and obliquity appears to influence the persistence of interglacial conditions over one or two insolation peaks, leading to shorter (~ 13 kyr) and longer (~ 28 kyr) interglacials. Glacial inception occurs approximately 10 kyr after peak interglacial conditions in temperature and CO2, representing a characteristic timescale of interglacial decline. Second-order differences in duration may be a function of stochasticity in the climate system, or small variations in background climate state and the magnitude of feedbacks and mechanisms contributing to glacial inception, and as such, difficult to predict. On the other hand, the broad duration of an interglacial may be determined by the phasing of astronomical parameters and the history of insolation, rather than the instantaneous forcing strength at inception
Hydrogen and muonium in diamond: A path-integral molecular dynamics simulation
Isolated hydrogen, deuterium, and muonium in diamond have been studied by
path-integral molecular dynamics simulations in the canonical ensemble.
Finite-temperature properties of these point defects were analyzed in the range
from 100 to 800 K. Interatomic interactions were modeled by a tight-binding
potential fitted to density-functional calculations. The most stable position
for these hydrogenic impurities is found at the C-C bond center. Vibrational
frequencies have been obtained from a linear-response approach, based on
correlations of atom displacements at finite temperatures. The results show a
large anharmonic effect in impurity vibrations at the bond center site, which
hardens the vibrational modes with respect to a harmonic approximation.
Zero-point motion causes an appreciable shift of the defect level in the
electronic gap, as a consequence of electron-phonon interaction. This defect
level goes down by 70 meV when replacing hydrogen by muonium.Comment: 11 pages, 8 figure
- …