14,815 research outputs found

    Should One Use the Ray-by-Ray Approximation in Core-Collapse Supernova Simulations?

    Full text link
    We perform the first self-consistent, time-dependent, multi-group calculations in two dimensions (2D) to address the consequences of using the ray-by-ray+ transport simplification in core-collapse supernova simulations. Such a dimensional reduction is employed by many researchers to facilitate their resource-intensive calculations. Our new code (F{\sc{ornax}}) implements multi-D transport, and can, by zeroing out transverse flux terms, emulate the ray-by-ray+ scheme. Using the same microphysics, initial models, resolution, and code, we compare the results of simulating 12-, 15-, 20-, and 25-M_{\odot} progenitor models using these two transport methods. Our findings call into question the wisdom of the pervasive use of the ray-by-ray+ approach. Employing it leads to maximum post-bounce/pre-explosion shock radii that are almost universally larger by tens of kilometers than those derived using the more accurate scheme, typically leaving the post-bounce matter less bound and artificially more "explodable." In fact, for our 25-M_{\odot} progenitor, the ray-by-ray+ model explodes, while the corresponding multi-D transport model does not. Therefore, in two dimensions the combination of ray-by-ray+ with the axial sloshing hydrodynamics that is a feature of 2D supernova dynamics can result in quantitatively, and perhaps qualitatively, incorrect results.Comment: Updated and revised text; 13 pages; 13 figures; Accepted to Ap.

    Where do uncertainties reside within environmental risk assessments? Expert opinion on uncertainty distributions for pesticide risks to surface water organisms

    Get PDF
    A reliable characterisation of uncertainties can aid uncertainty identification during environmental risk assessments (ERAs). However, typologies can be implemented inconsistently, causing uncertainties to go unidentified. We present an approach based on nine structured elicitations, in which subject-matter experts, for pesticide risks to surface water organisms, validate and assess three dimensions of uncertainty: its level (the severity of uncertainty, ranging from determinism to ignorance); nature (whether the uncertainty is epistemic or aleatory); and location (the data source or area in which the uncertainty arises). Risk characterisation contains the highest median levels of uncertainty, associated with estimating, aggregating and evaluating the magnitude of risks. Regarding the locations in which uncertainty is manifest, data uncertainty is dominant in problem formulation, exposure assessment and effects assessment. The comprehensive description of uncertainty described will enable risk analysts to prioritise the required phases, groups of tasks, or individual tasks within a risk analysis according to the highest levels of uncertainty, the potential for uncertainty to be reduced or quantified, or the types of location-based uncertainty, thus aiding uncertainty prioritisation during environmental risk assessments. In turn, it is expected to inform investment in uncertainty reduction or targeted risk management action

    Development of lanthanum nickelate as a cathode for use in intermediate temperature solid oxide fuel cells

    Get PDF
    The performance of lanthanum nickelate, La2NiO4+δ (LNO), as a cathode in IT-SOFCs with the electrolyte cerium gadolinium oxide, Ce0.9Gd0.1O2−δ (CGO), has been investigated by AC impedance spectroscopy of symmetrical cells. A significant reduction in the area specific resistance (ASR) has been achieved with a layered cathode structure consisting of a thin compact LNO layer between the dense electrolyte and porous electrode. This decrease in ASR is believed to be a result of contact at the electrolyte/cathode boundary enhancing the oxygen ion transfer to the electrolyte. An ASR of 1.0 Ω cm2 at 700 °C was measured in a symmetrical cell with this layered structure, compared to an ASR of 7.4 Ω cm2 in a cell without the compact layer. In addition, further improvements were observed by enhancing the cell current collection and it is anticipated that a symmetrical cell consisting of a layered structure with adequate current collection would lower these ASR values further

    Hydrogenic Spin Quantum Computing in Silicon: A Digital Approach

    Get PDF
    We suggest an architecture for quantum computing with spin-pair encoded qubits in silicon. Electron-nuclear spin-pairs are controlled by a dc magnetic field and electrode-switched on and off hyperfine interaction. This digital processing is insensitive to tuning errors and easy to model. Electron shuttling between donors enables multi-qubit logic. These hydrogenic spin qubits are transferable to nuclear spin-pairs, which have long coherence times, and electron spin-pairs, which are ideally suited for measurement and initialization. The architecture is scalable to highly parallel operation.Comment: 4 pages, 5 figures; refereed and published version with improved introductio

    Unbiased bases (Hadamards) for 6-level systems: Four ways from Fourier

    Full text link
    In quantum mechanics some properties are maximally incompatible, such as the position and momentum of a particle or the vertical and horizontal projections of a 2-level spin. Given any definite state of one property the other property is completely random, or unbiased. For N-level systems, the 6-level ones are the smallest for which a tomographically efficient set of N+1 mutually unbiased bases (MUBs) has not been found. To facilitate the search, we numerically extend the classification of unbiased bases, or Hadamards, by incrementally adjusting relative phases in a standard basis. We consider the non-unitarity caused by small adjustments with a second order Taylor expansion, and choose incremental steps within the 4-dimensional nullspace of the curvature. In this way we prescribe a numerical integration of a 4-parameter set of Hadamards of order 6.Comment: 5 pages, 2 figure
    corecore