32 research outputs found

    Myoglobins - The Link Between Discoloration And Lipid Oxidation In Muscle And Meat

    Get PDF
    Aerobic metabolism changes rapidly to glycolysis post-mortem resulting in a pH-decrease during the transformation of muscle in to meat affecting ligand binding and redox potential of the heme iron in myoglobin, the meat pigment. The "inorganic chemistry" of meat involves (i) redox-cycling between iron(II), iron(III), and iron(IV)/protein radicals; (ii) ligand exchange processes; and (iii) spin-equilibra with a change in coordination number for the heme iron. In addition to the function of myoglobin for oxygen storage, new physiological roles of myoglobin are currently being discovered, which notably find close parallels in the processes in fresh meat and nitrite-cured meat products. Myoglobin may be characterized as a bioreactor for small molecules like O2, NO, CO, CO2, H2O, and HNO with importance in bio-regulation and in protection against oxidative stress in vivo otherwise affecting lipids in membranes. Many of these processes may be recognised as colour changes in fresh meat and cured meat products under different atmospheric conditions, and could also be instructive for teaching purposes.29612701278Kagen, L.J., (1973) Myoglobin. Biochemical, Physiological, and Clinical Aspects, , Columbia University Press: New YorkBrunori, M., (2001) Trends Biochem. Sci., 26, p. 209Brunori, M., (2001) Trends Biochem. Sci., 26, p. 21Wittenberg, J.B., Wittenberg, B.A., (2003) J. Exp. Biol., 206, p. 2011Frauenfelder, H., Fenimore, P.W., McMahon, B.H., (2002) Biophys. Chem., 98, p. 35Brunori, M., (2000) Biophys. Chem., 86, p. 221Sharma, V.S., Magde, D., (1999) Methods, 19, p. 494Griddings, G.G., (1977) Crit. Rev. Food Nutr., 9, p. 81Livingston, D.J., Brown, W.D., (1981) Food Technol., MAY, p. 244Antonini, E., Brunori, M., (1971) Hemoglobin and Myoglobin in Their Reactions with Ligands, , North-Holland Publishing Company: AmsterdamSchläfer, H.L., Gliemann, G., (1969) Basic Principles of Ligand Field Theory, , John Wiley & Sons Ltd.: LondonEnemark, J.H., Feltham, R.D., (1974) Coord. Chem. Rev., 13, p. 339Richter-Addo, G.B., Legzdins, P., (1992) Metal Nitrosyls, , Oxford University Press: New YorkOlson, J.S., Phillips, G.N., (1996) J. Biol. Chem., 271, p. 17593Springer, B.A., Sligar, S.G., Olson, J.S., Phillips, G.N., (1994) Chem. Rev., 94, p. 699Olson, J.S., Phillips, G.N., (1997) J. Biol. Ing. Chem., 2, p. 544Copeland, D.M., West, A.H., Richter-Addo, G.B., (2003) Proteins: Struct., Funct., Genet., 53, p. 182Brucker, E.A., Olson, J.S., Ikeda-Saito, M., Phillips, G.N., (1998) Proteins: Struct., Funct., Genet., 30, p. 352Spiro, T.G., Kozlowski, P.M., (2001) Acc. Chem. Res., 34, p. 137Clarke, M.J., Gaul, J.B., (1993) Structure and Bonding, , Clarke, M. J.Goodenough, J. B.Ibers, J. A.Jørgensen, C. K.Mingos, D. M. P.Neilands, J. B.Palmer, G. A.Reinen, D.Sadler, P. J.Weiss, R.Williams, R. J. P., eds.Springer-Verlag: BerlinCarducci, M.D., Pressprich, M.R., Coppens, P., (1997) J. Am. Chem. Soc., 119, p. 2669Hoshino, M., Laverman, L.E., Ford, P.C., (1999) Coord. Chem. Rev., 187, p. 75Andersen, H.J., Johansen, H.S., Shek, C.K., Skibsted, L.H., (1990) Z. Lebensm. Unters. For., 191, p. 293Duprat, A.F., Traylor, T.G., Wu, G.Z., Coletta, M., Sharma, V.S., Walda, K.N., Magde, D., (1995) Biochemistry, 34, p. 2634Decatur, S.M., Franzen, S., DePillis, G.D., Dyer, R.B., Woodruff, W.H., Boxer, S.G., (1996) Biochemistry, 35, p. 4939Dierks, E.A., Hu, S.Z., Vogel, K.M., Yu, A.E., Spiro, T.G., Burstyn, J.N., (1997) J. Am. Chem. Soc., 119, p. 7316Zhao, Y.D., Hoganson, C., Babcock, G.T., Marletta, M.A., (1998) Biochemistry, 37, p. 12458Migita, C.T., Salerno, J.C., Masters, B.S., Martasek, P., McMillan, K., Ikeda-Saito, M., (1997) Biochemistry, 36, p. 10987Merryweather, J., Summers, F., Vitello, L.B., Erman, J.E., (1998) Arch. Biochem. Biophys., 358, p. 359Wanat, A., Gdula-Argasinska, J., Rutkowska-Zbik, D., Witko, M., Stochel, G., Van Eldik, R., (2002) J. Biol. Ing. Chem., 7, p. 165Laverman, L.E., Hoshino, M., Ford, P.C., (1997) J. Am. Chem. Soc., 119, p. 12663Qiu, Y., Sutton, L., Riggs, A.F., (1998) J. Biol. Chem., 273, p. 23426Garry, D.J., Kanatous, S.B., Mammen, P.P.A., (2003) Trends Cardiovas. Med., 13, p. 111Shikama, K., (1998) Chem. Rev., 98, p. 1357Brantley Jr., R.E., Smerdon, S.J., Wilkinson, A.J., Singleton, E.W., Olson, J.S., (1993) J. Biol. Chem., 268, p. 6995Andersen, H.J., Bertelsen, G., Skibsted, L.H., (1988) Acta Chem. Scand. A, 42, p. 226Gutzke, D., Trout, G.R., (2002) J. Agric. Food Chem., 50, p. 2673Bruun-Jensen, L., Skibsted, L.H., (1996) Meat Sci., 44, p. 145Jakobsen, M., Bertelsen, G., (2002) J. Muscle Foods, 13, p. 143Bertelsen, G., Skibsted, L.H., (1987) Meat Sci., 19, p. 243Andersen, H.J., Bertelsen, G., Skibsted, L.H., (1990) Meat Sci., 28, p. 87Mikkelsen, A., Juncher, D., Skibsted, L.H., (1999) Meat Sci., 51, p. 155Mikkelsen, A., Skibsted, L.H., (1992) Z. Lebensm. Unters. For., 194, p. 9Skibsted, L.H., Mikkelsen, A., Bertelsen, G., (1994) Flavors of Meat, Meat Products and Seafoods, , Shahidi, F., ed.Blackie Academic & Professional: LondonMøller, J.K.S., Skibsted, L.H., (2002) Chem. Rev., 102, p. 1167Skibsted, L.H., (1992) The Chemistry of Muscle-based Foods, , Johnston, D. E.Knight, M. K.Ledward, D. A., eds.The Royal Society of Chemistry: Cambridge, UKKoppenol, W.H., (1994) FEBS Lett., 347, p. 5Sebranek, J.G., Fox, J.B.J., (1985) J. Sci. Food. Agric., 36, p. 1169Hoshino, M., Maeda, M., Konishi, M., Seki, H., Ford, P.C., (1996) J. Am. Chem. Soc., 118, p. 5702Pegg, R.B., Shahidi, F., (2000) Nitrite Curing of Meat. The N-Nitrosamine Problem and Nitrite Alternatives, , Food & Nutrition Press, Inc.: ConnecticutBonnett, R., Chandra, S., Charalambides, A.A., Sales, K.D., Scourides, P.A., (1980) J. Chem. Soc., Perkin Trans. 1, 8, p. 1706Arnold, E.V., Bohle, D.S., (1996) Methods Enzymol., 269, p. 41Møller, J.K.S., Skibsted, L.H., (2004) Chem. Eur.J., 10, p. 2291Frauenfelder, H., McMahon, B.H., Austin, R.H., Chu, K., Groves, J.T., (2001) Proc. Natl. Acad. Sci. U.S.A., 98, p. 2370Brunori, M., Gibson, Q.H., (2001) Embo Reports, 2, p. 674Møller, J.K.S., Jensen, J.S., Olsen, M.B., Skibsted, L.H., Bertelsen, G., (2000) Meat Sci., 54, p. 399Andersen, H.J., Rasmussen, M.A., (1992) Int. J. Food Sci. Technol., 27, p. 1Andersen, H.J., Skibsted, L.H., (1992) J. Agric. Food Chem., 40, p. 1741Møller, J.K.S., Bertelsen, G., Skibsted, L.H., (2002) Meat Sci., 60, p. 421Baron, C.P., Andersen, H.J., (2002) J. Agric. Food Chem., 50, p. 3887Irwin, J.A., Ostdal, H., Davies, M.J., (1999) Arch. Biochem. Biophys., 362, p. 94Giulivi, C., Cadenas, E., (1994) Methods Enzymol., 233, p. 189Grinberg, L.N., O'Brien, P.J., Hrkal, Z., (1999) Free Radical Biol. Med., 27, p. 214Laranjinha, J., Vieira, O., Almeida, L., Madeira, V., (1996) Biochem. Pharmacol., 51, p. 395Baron, C.P., Skibsted, L.H., Andersen, H.J., (2002) J. Agric. Food Chem., 50, p. 883Harrington, J.P., Newton, P., Crumpton, T., Keaton, L., (1993) Int. J. Biochem., 25, p. 665Saifutdinov, R.G., Larina, L.I., Vakul'skaya, T.I., Voronkov, M.G., (2001) Electron Paramagnetic Resonance in Biochemistry and Medicine, , Kluwer Academic/Plenum Publishers: New YorkHendrickson, S.C., St. Louis, J.D., Lowe, J.E., Abdelaleem, S., (1997) Mol. Cell. Biochem., 166, p. 85Coutron-Gambotti, C., Gandemer, G., (1999) Food Chem., 64, p. 95Vestergaard, C.S., Schivazappa, C., Virgili, R., (2000) Meat Sci., 55, p. 1Henry, G.E., Momin, R.A., Nair, M.G., Dewitt, D.L., (2002) J. Agric. Food Chem., 50, p. 2231Gunther, M.R., Sampath, V., Caughey, W.S., (1999) Free Radical Biol. Med., 26, p. 1388Mikkelsen, A., Skibsted, L.H., (1995) Z. Lebensm. Unters. For., 200, p. 171Inouye, M., Mio, T., Sumino, K., (1999) Clinica Chimica Acta, 285, p. 35Inouye, M., Mio, T., Sumino, K., (1999) Metabolism, 48, p. 205Warren, J.D., Blumbergs, P.C., Thompson, P.D., (2002) Muscle & Nerve, 25, p. 332Roy, A., Sen, S., Chakraborti, A.S., (2004) Free Radical Res., 38, p. 139Eiserich, J.P., Patel, R.P., O'Donnell, V.B., (1998) Mol. Aspects Med., 19, p. 221Hogg, N., Kalyanaraman, B., (1999) Biochim. Biophys. Acta, 1411, p. 378Koppenol, W.H., (2001) Redox Report, 6, p. 339Jourd'heuil, D., Mills, L., Miles, A.M., Grisham, M.B., (1998) Nitric Oxide Biol. Chem., 2, p. 37Gorbunov, N.V., Tyurina, Y.Y., Salama, G., Day, B.W., Claycamp, H.G., Argyros, G., Elsayed, N.M., Kagan, V.E., (1998) Biochem. Biophys. Res. Commun., 244, p. 647Flogel, U., Decking, U.K.M., Godecke, A., Schrader, J., (1999) J. Mol. Cell. Cardiol., 31, p. 827Godecke, A., Molojavyi, A., Heger, J., Flogel, U., Ding, Z.P., Jacoby, C., Schrader, J.R., (2003) J. Biol. Chem., 278, p. 21761Kanner, J., Harel, S., Shagalovich, J., Berman, S., (1984) J. Agric. Food Chem., 32, p. 512Morrissey, P.A., Tichivangana, J.Z., (1985) Meat Sci., 14, p. 175Kanner, J., (1996) Methods Enzymol., 269, p. 218Møller, J.K.S., Sosniecki, L., Skibsted, L.H., (2002) Biochim. Biophys. Acta, 1570, p. 129Herold, S., Rehmann, F.J.K., (2001) J. Biol. Ing. Chem., 6, p. 543Kroger-Ohlsen, M.V., Skibsted, L.H., (2000) Food Chem., 70, p. 209Connolly, B.J., Brannan, R.G., Decker, E.A., (2002) J. Agric. Food Chem., 50, p. 5220Exner, M., Herold, S., (2000) Chem. Res. Toxicol., 13, p. 287Herold, S., Exner, M., Boccini, F., (2003) Chem. Res. Toxicol., 16, p. 390Møller, J.K.S., Nannerup, L., Skibsted, L.H., (2005) Meat Sci., 69, p. 71Herold, S., Shivashankar, K., Mehl, M., (2002) Biochemistry, 41, p. 13460Romero, N., Radi, R., Linares, E., Augusto, O., Detweiler, C.D., Mason, R.P., Denicola, A., (2003) J. Biol. Chem., 278, p. 44049Grzelak, A., Balcerczyk, A., Mateja, A., Bartosz, G., (2001) Biochim. Biophys. Acta, 1528, p. 97Bourassa, J.L., Ives, E.P., Marqueling, A.L., Shimanovich, R., Groves, J.T., (2001) J. Am. Chem. Soc., 123, p. 5142Brannan, R.G., Decker, E.A., (2002) Meat Sci., 62, p. 229Brannan, R.G., Decker, E.A., (2001) J. Agric. Food Chem., 49, p. 3074Ostdal, H., Sorensen, G., Daneshvar, B., Skibsted, L.H., (2003) Eur. Food Res. Technol., 216, p. 23Minetti, M., Scorza, G., Pietraforte, D., (1999) Biochemistry, 38, p. 2078Witting, P.K., Mauk, A.G., Douglas, D.J., Stocker, R., (2001) Biochem. Biophys. Res. Commun., 286, p. 35

    Potentials to differentiate milk composition by different feeding strategies

    Get PDF
    To investigate the effect of the dietary intake of the cow on milk composition, bulk-tank milk was collected on 5 occasions from conventional (n = 15) and organic (n = 10) farms in Denmark and on 4 occasions from low-input nonorganic farms in the United Kingdom, along with management and production parameters. Production of milk based on feeding a high intake of cereals, pasture, and grass silage resulted in milk with a high concentration of α-linolenic acid (9.4 ± 0.2 mg/ kg of fatty acids), polyunsaturated fatty acids (3.66 ± 0.07 mg/kg of fatty acids), and natural stereoisomer of α-tocopherol (RRR-α-tocopherol, 18.6 ± 0.5 mg/kg of milk fat). A milk production system using a high proportion of maize silage, by-products, and commercial concentrate mix was associated with milk with high concentrations of linoleic acid (LA; 19.7 ± 0.4 g/kg of fatty acids), monounsaturated fatty acids (27.5 ± 0.3 mg/kg of fatty acids), and a high ratio between LA and α-linolenic acid (4.7 ± 0.2). Comparing these 2 production systems with a very extensive nonorganic milk production system relying on pasture as almost the sole feed (95 ± 4% dry matter intake), it was found that the concentrations of conjugated LA (cis-9,trans-11; 17.5 ± 0.7 g/kg of fatty acids), trans-11-vaccenic acid (37 ± 2 g/kg of fatty acids), and monounsaturated fatty acids (30.4 ± 0.6 g/kg of fatty acids) were higher in the extensively produced milk together with the concentration of antioxidants; total α-tocopherol (32.0 ± 0.8 mg/kg of milk fat), RRR-α-tocopherol (30.2 ± 0.8 mg/kg of milk fat), and β-carotene (9.3 ± 0.5 mg/kg of milk fat) compared with the organic and conventional milk. Moreover, the concentration of LA (9.2 ± 0.7 g/kg of fatty acids) in milk from the extensive milk production system was found to approach the recommended unity ratio between n-6 and n-3, although extensive milk production also resulted in a lower daily milk yield

    The difference in transfer of all-rac-a-tocopherol stereo-isomers to milk from cows and the effect on its oxidative stability

    No full text
    Milk from cows fed high concentration of synthetic all-rac-a-tocopheryl acetate (2-3 g day-1) were shown not to have improved oxidative stability, when oxidation were initiated by light exposure or Cu(II) addition. For milk with high fraction of unsaturated lipids as obtained through feed with toasted soybeans, the high a-tocopherol content even acted prooxidative. Stereo-selective analysis of the milk showed that among the 8 stereo-isomers of all-rac-a-tocopherol, only the 2R-stereo-isomers were excreted into the milk and among these mainly the native RRR-stereo-isomer. Feeding studies of dairy cows should accordingly be reevaluated in two respect: (i) the use of high level supplementation of a-tocopherol, as it may induce lipid oxidation, (ii) the use of synthetic, none-resolved a-tocopherol as mainly the native RRR-stereo-isomer, only partly the three other 2R-stereo-isomers, and none of the three 2S-stereo-isomers are excreted into the milk
    corecore