79 research outputs found

    Encouraging versatile thinking in algebra using the computer

    Get PDF
    In this article we formulate and analyse some of the obstacles to understanding the notion of a variable, and the use and meaning of algebraic notation, and report empirical evidence to support the hypothesis that an approach using the computer will be more successful in overcoming these obstacles. The computer approach is formulated within a wider framework ofversatile thinking in which global, holistic processing complements local, sequential processing. This is done through a combination of programming in BASIC, physical activities which simulate computer storage and manipulation of variables, and specific software which evaluates expressions in standard mathematical notation. The software is designed to enable the user to explore examples and non-examples of a concept, in this case equivalent and non-equivalent expressions. We call such a piece of software ageneric organizer because if offers examples and non-examples which may be seen not just in specific terms, but as typical, or generic, examples of the algebraic processes, assisting the pupil in the difficult task of abstracting the more general concept which they represent. Empirical evidence from several related studies shows that such an approach significantly improves the understanding of higher order concepts in algebra, and that any initial loss in manipulative facility through lack of practice is more than made up at a later stage

    Troubling "understanding mathematics-in-depth": Its role in the identity work of student-teachers in England

    Get PDF
    Copyright @ The Author(s) 2013. This article is published with open access at Springerlink.comThis article has been made available through the Brunel Open Access Publishing Fund.In this paper, we focus on an initiative in England devised to prepare non-mathematics graduates to train as secondary mathematics teachers through a 6-month Mathematics Enhancement Course (MEC) to boost their subject knowledge. The course documentation focuses on the need to develop “understanding mathematics in-depth” in students in order for them to become successful mathematics teachers. We take a poststructural approach, so we are not interested in asking what such an understanding is, about the value of this approach or about the effectiveness of the MECs in developing this understanding in their participants. Instead we explore what positions this discourse of “understanding mathematics in-depth” makes available to MEC students. We do this by looking in detail at the “identity work” of two students, analysing how they use and are used by this discourse to position themselves as future mathematics teachers. In doing so, we show how even benign-looking social practices such as “understanding mathematics in-depth” are implicated in practices of inclusion and exclusion. We show this through detailed readings of interviews with two participants, one of whom fits with the dominant discourses in the MEC and the other who, despite passing the MEC, experiences tensions between her national identity work and MEC discourses. We argue that it is vital to explore “identity work” within teacher education contexts to ensure that becoming a successful mathematics teacher is equally available to all.King’s College Londo

    Lacan, subjectivity and the task of mathematics education research

    Get PDF
    This paper addresses the issue of subjectivity in the context of mathematics education research. It introduces the psychoanalyst and theorist Jacques Lacan whose work on subjectivity combined Freud’s psychoanalytic theory with processes of signification as developed in the work of de Saussure and Peirce. The paper positions Lacan’s subjectivity initially in relation to the work of Piaget and Vygotsky who have been widely cited within mathematics education research, but more extensively it is shown how Lacan’s conception of subjectivity provides a development of Peircian semiotics that has been influential for some recent work in the area. Through this route Lacan’s work enables a conception of subjectivity that combines yet transcends Piaget’s psychology and Peirce’s semiotics and in so doing provides a bridge from mathematics education research to contemporary theories of subjectivity more prevalent in the cultural sciences. It is argued that these broader conceptions of subjectivity enable mathematics education research to support more effective engagement by teachers, teacher educators, researchers and students in the wider social domain

    Luke 10, 38-42 and Acts 6, 1-7: a Lucan diptych on Diakonia

    Full text link

    In Search of Parallels: ben Sira and the Book of Kings

    Full text link
    • 

    corecore