3 research outputs found

    Learning together for and with the Martuwarra Fitzroy River

    Get PDF
    Co-production across scientific and Indigenous knowledge systems has become a cornerstone of research to enhance knowledge, practice, ethics, and foster sustainability transformations. However, the profound differences in world views and the complex and contested histories of nation-state colonisation on Indigenous territories, highlight both opportunities and risks for Indigenous people when engaging with knowledge co-production. This paper investigates the conditions under which knowledge co-production can lead to improved Indigenous adaptive environmental planning and management among remote land-attached Indigenous peoples through a case study with ten Traditional Owner groups in the Martuwarra (Fitzroy River) Catchment in Western Australia’s Kimberley region. The research team built a 3D map of the river and used it, together with an interactive table-top projector, to bring together both scientific and Indigenous spatial knowledge. Participatory influence mapping, aligned with Traditional Owner priorities to achieve cultural governance and management planning goals set out in the Fitzroy River Declaration, investigated power relations. An analytical framework, examining underlying mechanisms of social learning, knowledge promotion and enhancing influence, based on different theories of change, was applied to unpack the immediate outcomes from these activities. The analysis identified that knowledge co-production activities improved the accessibility of the knowledge, the experiences of the knowledge users, strengthened collective identity and partnerships, and strengthened Indigenous-led institutions. The focus on cultural governance and management planning goals in the Fitzroy River Declaration enabled the activities to directly affect key drivers of Indigenous adaptive environmental planning and management—the Indigenous-led institutions. The nation-state arrangements also gave some support to local learning and decision-making through a key Indigenous institution, Martuwarra Fitzroy River Council. Knowledge co-production with remote land-attached Indigenous peoples can improve adaptive environmental planning and management where it fosters learning together, is grounded in the Indigenous-led institutions and addresses their priorities

    A comparison between laboratory and numerical simulations of gravity-driven coastal currents with a geostrophic theory

    No full text
    Laboratory and numerical simulations of buoyant, gravity-driven coastal currents are summarized and compared to the inviscid geostrophic theory of Thomas \& Linden 2007. {Thomas, P. J. and Linden, P.F. 2007. Rotating gravity currents: small-scale and large-scale laboratory experiments and a geostrophic model. {J. Fluid Mech.} {578}, 35-65}. The lengths, widths and velocities of the buoyant currents are studied. Agreement between the laboratory and numerical experiments and the geostrophic theory is found to depend on two non-dimensional parameters which characterize, respectively, the steepness of the plumes isopycnal interface and the strength of horizontal viscous forces (quantified by the horizontal Ekman number). The best agreement between experiments (both laboratory and numerical) and the geostrophic theory are found for the least viscous flows. At elevated values of the horizontal Ekman number, laboratory and numerical experiments depart more significantly from theory

    Laboratory and numerical simulations of gravity-driven coastal currents: Departures from geostrophic theory

    No full text
    Laboratory realizations and numerical simulations of buoyant, gravity-driven coastal plumes are summarized and compared to the inviscid geostrophic theory of Thomas and Linden (2007). The lengths, widths and velocities of the buoyant currents, as well as their internal structure and dynamics, are studied. Agreement between the laboratory and numerical experiments and the geostrophic theory is found to depend on two non-dimensional parameters which characterize, respectively, the steepness of the plumes isopycnal interface (1) and the strength of horizontal viscous forces (Ek(H), the horizontal Ekman number). In general, the numerical and laboratory experiments are in good agreement when conducted at comparable values of land EkH. The best agreement between experiments (both laboratory and numerical) and the geostrophic theory are found for the least viscous flows, though important departures from the theoretical predictions are nonetheless found, particularly in the early development of the plume system. At elevated values of the horizontal Ekman number, laboratory and numerical experiments depart more significantly from theory, e.g., in the rate of plume movement along the coast. A simple extension to the geostrophic theory suggests that the discrepancy between the theoretical and experimental propagation speed should be proportional to the square root of the horizontal Ekman number. The numerical simulations confirm this relationship. For some combinations of the non-dimensional parameters, instabilities develop in the seaward edge of the buoyant plumes. The laboratory and numerical experiments are used together to infer the region within parameter space within which the instabilities occur. Mixing of ambient and buoyant fluids by the plume-edge instabilities is explored using the numerical results. (C) 2011 Elsevier B.V. All rights reserved
    corecore