345 research outputs found

    An in vitro study of the susceptibilities and growth dynamics of common ocular pathogens using five fluoroquinolones

    Get PDF
    Bacteria are responsible for up to 70% of all ocular infections including conjunctivitis, keratitis and endophthalmitis. If left untreated, a reduction of visual acuity, and in severe cases, sight loss, is possible. Treatment usually consists of a topically applied antibacterial preparation for patients with superficial infections. With intraocular infections, topical administration is augmented with systemic treatment or local instillation. While several types of drugs are available for ocular therapy, the fluoroquinolone class of antimicrobials is especially effective. This is due in part to their broad-spectrum of activity and low toxicity. However, as with any globally prescribed antimicrobial agent, bacterial resistance is an issue. Over the past 10 years there has been a decline in the effectiveness of older fluoroquinolones (ciprofloxacin and ofloxacin) in treating Gram-positive and, to a lesser extent, certain Gram-negative infections. In response to the declining activity of ciprofloxacin and ofloxacin, newer fluoroquinolones have been developed such as levofloxacin (L-isomer of ofloxacin), and more recently, gatifloxacin and moxifloxacin. In order to ensure the most potent drugs are being used to treat the most serious types of infection, studies need to be done to assess the activity of the current antimicrobial arsenal against pertinent infecting organisms. Three different types of experiments can be done to achieve this. In vitro potency can be tested two ways. The first is minimum inhibitory concentration (MIC). This test defines the concentration of antimicrobial drug that prevents growth of bacteria when tested against an inoculum of approximately 105 colony forming units (CFU)/ml. The second is the mutant prevention concentration (MPC), which is the amount of drug needed to inhibit a first step resistant mutant. This is a relatively new approach to measuring fluoroquinolone potency; like MIC it is not a measure of kill. A separate set of experiments are needed to assess in vitro killing. Kill curves measure the ability of an antimicrobial agent to reduce/kill a bacterial population over a period of 24 hours.Because bacterial loads can vary greatly in in vivo infections, kill curves were conducted on a series of four inoculum sizes ranging from 106 to 109 cfu/ml. Some of the most common ocular pathogens are Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae and Pseudomonas aeruginosa. Mycobacterium fortuitum and Mycobacterium chelonae, while much less commonly associated with ocular disease, are capable of causing vision-threatening infections. As a result, the above six organisms were used to test the in vitro potency of ciprofloxacin, ofloxacin, levofloxacin, moxifloxacin and gatifloxacin.Both MIC and MPC testing found both gatifloxacin and moxifloxacin to be 4-8-fold more potent in vitro against the Gram-positive organisms than the older fluoroquinolones with an average potency rank order of moxifloxacin = gatifloxacin > levofloxacin > ofloxacin = ciprofloxacin. The Gram-negative results, however, revealed that the older fluoroquinolones are still the most potent of the fluoroquinolones tested with an average potency rank order of ciprofloxacin > ofloxacin = levofloxacin > gatifloxacin = moxifloxacin. Kill curve results showed a significant difference in the rate of killing between the MIC and MPC drug concentrations. At the MIC drug concentration there was generally only a noticeable reduction in viable cells following 24 hours of drug exposure and in many cases this was followed by a period of bacterial re-growth. At the MPC drug concentration, a significant bacterial count reduction was often observed as early as 4 to 6 hours for both S. pneumoniae and H. influenzae. Surprisingly, there was little difference between the five fluoroquinolones in their rates of and amount of bacterial reduction.Because of high in vitro resistance rates in drugs like penicillin, the fluoroquinolones are an important broad-spectrum alternative. Consequently, it is imperative that measures are taken to maintain the efficacy of this class. One approach is to ensure that the most potent drug is being used to eradicate possible resistant sub-populations present in in vivo infections. The data from these experiments suggest that the new fluoroquinolones gatifloxacin and moxifloxacin are much more potent (in vitro) than older fluoroquinolones against Gram-positive bacteria. With Gram-negative pathogens, however, ciprofloxacin remains the most potent agent in vitro

    Planning target volume margins for prostate radiotherapy using daily electronic portal imaging and implanted fiducial markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fiducial markers and daily electronic portal imaging (EPI) can reduce the risk of geographic miss in prostate cancer radiotherapy. The purpose of this study was to estimate CTV to PTV margin requirements, without and with the use of this image guidance strategy.</p> <p>Methods</p> <p>46 patients underwent placement of 3 radio-opaque fiducial markers prior to prostate RT. Daily pre-treatment EPIs were taken, and isocenter placement errors were corrected if they were ≥ 3 mm along the left-right or superior-inferior axes, and/or ≥ 2 mm along the anterior-posterior axis. During-treatment EPIs were then obtained to estimate intra-fraction motion.</p> <p>Results</p> <p>Without image guidance, margins of 0.57 cm, 0.79 cm and 0.77 cm, along the left-right, superior-inferior and anterior-posterior axes respectively, are required to give 95% probability of complete CTV coverage each day. With the above image guidance strategy, these margins can be reduced to 0.36 cm, 0.37 cm and 0.37 cm respectively. Correction of all isocenter placement errors, regardless of size, would permit minimal additional reduction in margins.</p> <p>Conclusions</p> <p>Image guidance, using implanted fiducial markers and daily EPI, permits the use of narrower PTV margins without compromising coverage of the target, in the radiotherapy of prostate cancer.</p
    corecore