85 research outputs found
Berry and Pancharatnam Topological Phases of Atomic and Optical Systems
Theoretical and experimental studies of Berry and Pancharatnam phases are
reviewed. Basic elements of differential geometry are presented for
understanding the topological nature of these phases. The basic theory analyzed
by Berry in relation to magnetic monopoles is presented. The theory is
generalized to nonadiabatic processes and to noncyclic Pancharatnam phases.
Different systems are discussed including polarization optics, n-level atomic
systems, neutron interferometry and molecular topological phases.Comment: Review article,72 pages, 186 reference
Pharmacogenetics: data, concepts and tools to improve drug discovery and drug treatment
Variation in the human genome is a most important cause of variable response to drugs and other xenobiotics. Susceptibility to almost all diseases is determined to some extent by genetic variation. Driven by the advances in molecular biology, pharmacogenetics has evolved within the past 40 years from a niche discipline to a major driving force of clinical pharmacology, and it is currently one of the most actively pursued disciplines in applied biomedical research in general. Nowadays we can assess more than 1,000,000 polymorphisms or the expression of more than 25,000 genes in each participant of a clinical study – at affordable costs. This has not yet significantly changed common therapeutic practices, but a number of physicians are starting to consider polymorphisms, such as those in CYP2C9, CYP2C19, CYP2D6, TPMT and VKORC1, in daily medical practice. More obviously, pharmacogenetics has changed the practices and requirements in preclinical and clinical drug research; large clinical trials without a pharmacogenomic add-on appear to have become the minority. This review is about how the discipline of pharmacogenetics has evolved from the analysis of single proteins to current approaches involving the broad analyses of the entire genome and of all mRNA species or all metabolites and other approaches aimed at trying to understand the entire biological system. Pharmacogenetics and genomics are becoming substantially integrated fields of the profession of clinical pharmacology, and education in the relevant methods, knowledge and concepts form an indispensable part of the clinical pharmacology curriculum and the professional life of pharmacologists from early drug discovery to pharmacovigilance
Trait‐based analysis of subpolar North Atlantic phytoplankton and plastidic ciliate communities using automated flow cytometer
Plankton are an extremely diverse and polyphyletic group, exhibiting a large range in morphological and physiological traits. Here, we apply automated optical techniques, provided by the pulse‐shape recording automated flow cytometer—CytoSense—to investigate trait variability of phytoplankton and plastidic ciliates in Arctic and Atlantic waters of the subpolar North Atlantic. We used the bio‐optical descriptors derived from the CytoSense (light scattering [forward and sideward] and fluorescence [red, yellow/green and orange from chlorophyll a, degraded pigments, and phycobiliproteins, respectively]) and translated them into functional traits to demonstrate ecological trait variability along an environmental gradient. Cell size was the master trait varying in this study, with large photosynthetic microplankton (> 20 μm in cell diameter), including diatoms as single cells and chains, as well as plastidic ciliates found in Arctic waters, while small‐sized phytoplankton groups, such as the picoeukaryotes (< 4 μm) and the cyanobacteria Synechococcus were dominant in Atlantic waters. Morphological traits, such as chain/colony formation and structural complexity (i.e., cellular processes, setae, and internal vacuoles), appear to favor buoyancy in highly illuminated and stratified Arctic waters. In Atlantic waters, small cell size and spherical cell shape, in addition to photo‐physiological traits, such as high internal pigmentation, offer chromatic adaptation for survival in the low nutrient and dynamic mixing waters of the Atlantic Ocean. The use of automated techniques that quantify ecological traits holds exciting new opportunities to unravel linkages between the structure and function of plankton communities and marine ecosystems
- …