16 research outputs found

    Single-cell DNA sequencing reveals a high incidence of chromosomal abnormalities in human blastocysts

    Get PDF
    Aneuploidy, a deviation from the normal chromosome copy number, is common in human embryos and is considered a primary cause of implantation failure and early pregnancy loss. Meiotic errors lead to uniformly abnormal karyotypes, while mitotic errors lead to chromosomal mosaicism: the presence of cells with at least 2 different karyotypes within an embryo. Knowledge about mosaicism in blastocysts mainly derives from bulk DNA sequencing (DNA-Seq) of multicellular trophectoderm (TE) and/or inner cell mass (ICM) samples. However, this can only detect an average net gain or loss of DNA above a detection threshold of 20%–30%. To accurately assess mosaicism, we separated the TE and ICM of 55 good-quality surplus blastocysts and successfully applied single-cell whole-genome sequencing (scKaryo-Seq) on 1,057 cells. Mosaicism involving numerical and structural chromosome abnormalities was detected in 82% of the embryos, in which most abnormalities affected less than 20% of the cells. Structural abnormalities, potentially caused by replication stress and DNA damage, were observed in 69% of the embryos. In conclusion, our findings indicated that mosaicism was prevalent in good-quality blastocysts, whereas these blastocysts would likely be identified as normal with current bulk DNA-Seq techniques used for preimplantation genetic testing for aneuploidy

    Microtubule nucleation from the fibrous corona by LIC1-pericentrin promotes chromosome congression

    Get PDF
    Error-free chromosome segregation in mitosis and meiosis relies on the assembly of a microtubule-based spindle that interacts with kinetochores to guide chromosomes to the cell equator before segregation in anaphase. Microtubules sprout from nucleation sites such as centrosomes, but kinetochores can also promote microtubule formation. It is unclear, however, how kinetochore-derived microtubules are generated and what their role is in chromosome segregation. Here, we show that the transient outer-kinetochore meshwork known as the fibrous corona serves as an autonomous microtubule nucleation platform. The fibrous corona is essential for the nucleation of kinetochore-derived microtubules, and when dissociated from the core kinetochore, it retains microtubule nucleation capacity. Nucleation relies on a fibrous-corona-bound pool of the LIC1 subunit of the dynein motor complex, which interacts with the γ-tubulin-tethering protein pericentrin (PCNT). PCNT is essential for microtubule nucleation from fibrous coronas, and in centrosome-depleted cells, where nearly all mitotic nucleation occurs at fibrous coronas, chromosome congression is fully dependent on PCNT. We further show that chromosomes in bovine oocytes, which naturally lack centrosomes, have highly expanded fibrous coronas that drive chromosome-derived microtubule nucleation. Preventing fibrous corona expansion in these cells impairs chromosome congression and causes spindle assembly defects. Our results show that fibrous coronas are autonomous microtubule-organizing centers that are important for spindle assembly, which may be especially relevant in acentrosomal cells such as oocytes

    Microtubule nucleation from the fibrous corona by LIC1-pericentrin promotes chromosome congression

    Get PDF
    Error-free chromosome segregation in mitosis and meiosis relies on the assembly of a microtubule-based spindle that interacts with kinetochores to guide chromosomes to the cell equator before segregation in anaphase. Microtubules sprout from nucleation sites such as centrosomes, but kinetochores can also promote microtubule formation. It is unclear, however, how kinetochore-derived microtubules are generated and what their role is in chromosome segregation. Here, we show that the transient outer-kinetochore meshwork known as the fibrous corona serves as an autonomous microtubule nucleation platform. The fibrous corona is essential for the nucleation of kinetochore-derived microtubules, and when dissociated from the core kinetochore, it retains microtubule nucleation capacity. Nucleation relies on a fibrous-corona-bound pool of the LIC1 subunit of the dynein motor complex, which interacts with the γ-tubulin-tethering protein pericentrin (PCNT). PCNT is essential for microtubule nucleation from fibrous coronas, and in centrosome-depleted cells, where nearly all mitotic nucleation occurs at fibrous coronas, chromosome congression is fully dependent on PCNT. We further show that chromosomes in bovine oocytes, which naturally lack centrosomes, have highly expanded fibrous coronas that drive chromosome-derived microtubule nucleation. Preventing fibrous corona expansion in these cells impairs chromosome congression and causes spindle assembly defects. Our results show that fibrous coronas are autonomous microtubule-organizing centers that are important for spindle assembly, which may be especially relevant in acentrosomal cells such as oocytes

    Nuclear chromosome locations dictate segregation error frequencies

    Get PDF
    Chromosome segregation errors during cell divisions generate aneuploidies and micronuclei, which can undergo extensive chromosomal rearrangements such as chromothripsis [1, 2, 3, 4, 5]. Selective pressures then shape distinct aneuploidy and rearrangement patterns—for example, in cancer [6, 7] —but it is unknown whether initial biases in segregation errors and micronucleation exist for particular chromosomes. Using single-cell DNA sequencing [8] after an error-prone mitosis in untransformed, diploid cell lines and organoids, we show that chromosomes have different segregation error frequencies that result in non-random aneuploidy landscapes. Isolation and sequencing of single micronuclei from these cells showed that mis-segregating chromosomes frequently also preferentially become entrapped in micronuclei. A similar bias was found in naturally occurring micronuclei of two cancer cell lines. We find that segregation error frequencies of individual chromosomes correlate with their location in the interphase nucleus, and show that this is highest for peripheral chromosomes behind spindle poles. Randomization of chromosome positions, Cas9-mediated live tracking and forced repositioning of individual chromosomes showed that a greater distance from the nuclear centre directly increases the propensity to mis-segregate. Accordingly, chromothripsis in cancer genomes [9] and aneuploidies in early development [10] occur more frequently for larger chromosomes, which are preferentially located near the nuclear periphery. Our findings reveal a direct link between nuclear chromosome positions, segregation error frequencies and micronucleus content, with implications for our understanding of tumour genome evolution and the origins of specific aneuploidies during development. 1. van Jaarsveld, R. H. & Kops, G. J. P. L. Difference makers: chromosomal instability versus aneuploidy in cancer. Trends Cancer 2, 561–571 (2016). 2. Compton, D. A. Mechanisms of aneuploidy. Curr. Opin. Cell Biol. 23, 109–113 (2011). 3. Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015). 4. Ly, P. et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 51, 705–715 (2019). 5. Shoshani, O. et al. Chromothripsis drives the evolution of gene amplification in cancer. Nature 591, 137–141 (2021). 6. Davoli, T. et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 155, 948–962 (2013). 7. Knouse, K. A., Davoli, T., Elledge, S. J. & Amon, A. Aneuploidy in cancer: seq-ing answers to old questions. Annu. Rev. Cancer Biol. 1, 335–354 (2017). 8. Bolhaqueiro, A. C. F. et al. Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids. Nat. Genet. 51, 824–834 (2019). 9. Cortés-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2, 658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020). 10. McCoy, R. C. et al. Evidence of selection against complex mitotic-origin aneuploidy during preimplantation development. PLoS Genet. 348, 235–238 (2015)

    Not All Chromosomes Are Created Equal: Following individual chromosomes in mitosis and beyond

    Full text link
    Aneuploidy is a hallmark of cancer and one of the main causes of miscarriages in humans1. Recent technical developments in the field of genomics allows one to count the number of chromosomes in a single cell at high-throughput. Using our recently developed single-cell karyotype-sequencing (scKaryo-seq) technique, we tried to answer three long-standing questions in the field of aneuploidy: 1. Are certain chromoso¬mes more likely to mis-segregate compared to others and if so, how? 2. How do cells respond differently to specific whole chromosome copy number changes? 3. How common is aneuploidy in human embryos? In this thesis, we first introduced the process of mitosis and the causes and consequences of when it goes wrong (Chapter 1). We then reviewed the prevalence, causes and consequences of non-random segregation errors (Chapter 2). In Chapter 3, we found that multiple different mitotic perturbations in various human cell lines led to the non-random mis-segregation of chromosomes. By following the behavior of single chromosomes during mitosis or by altering their location in the nucleus, we determined that peripherally located chromosomes, which are usually relatively large in size, are more likely to undergo segregation errors than centrally located ones. We also find that this happens in several chromosomally unstable cancer cell lines. We hypothesize that peripherally located chromosomes and in particular those ending up behind the spindle poles in mitosis are at higher risk to mis-segregate, because they experience more challenges in acquiring bi-oriented microtubule connections. In Chapter 4, we characterize the LossTag tool. This tool can be used to enrich for cells with specific monosomies, which allowed us to study the evolution of karyotypes of single cells over time and identify monosomy-specific responses. In Chapter 5, we use scKaryo-seq on 5 day old human embryos to show that chromosomal mosaicism is especially prevalent. Not only is it frequent, but we reason it is also commonly missed during bulk-sequencing because aneuploid cells are often present at low levels. In the current Chapter 6, I discuss our findings in the light of other literature and suggest potential research avenues. I propose explanations of why polar chromosomes so frequently mis-segregate compared to non-polar chromosomes, discuss the presence of mis-segregation biases in cancer cells and explore its consequences. Next, I suggest a potential use for the LossTag tool to help explain recurrent aneuploidy patterns. I conclude this section by debating the consequences of our findings in embryos on preimplantation genetic testing of aneuploidy and argue how in the future different single-cell sequencing approaches can help us better understand the pervasiveness of aneuploidy in healthy tissue

    Chromosome Inequality: Causes and Consequences of Non-Random Segregation Errors in Mitosis and Meiosis

    Get PDF
    Aneuploidy is a hallmark of cancer and a major cause of miscarriages in humans. It is caused by chromosome segregation errors during cell divisions. Evidence is mounting that the probability of specific chromosomes undergoing a segregation error is non-random. In other words, some chromosomes have a higher chance of contributing to aneuploid karyotypes than others. This could have important implications for the origins of recurrent aneuploidy patterns in cancer and developing embryos. Here, we review recent progress in understanding the prevalence and causes of non-random chromosome segregation errors in mammalian mitosis and meiosis. We evaluate its potential impact on cancer and human reproduction and discuss possible research avenues

    DNA mismatch repair and oligonucleotide end-protection promote base-pair substitution distal from a CRISPR/Cas9-induced DNA break

    Full text link
    Single-stranded oligodeoxyribonucleotide (ssODN)- mediated repair of CRISPR/Cas9-induced DNA double-strand breaks (DSB) can effectively be used to introduce small genomic alterations in a defined locus. Here, we reveal DNA mismatch repair (MMR) activity is crucial for efficient nucleotide substitution distal from the Cas9-induced DNA break when the substitution is instructed by the 3′ half of the ssODN. Furthermore, protecting the ssODN 3′ end with phosphorothioate linkages enhances MMRdependent gene editing events. Our findings can be exploited to optimize efficiencies of nucleotide substitutions distal from the DSB and imply that oligonucleotide-mediated gene editing is effectuated by templated break repair

    Single-cell DNA sequencing reveals a high incidence of chromosomal abnormalities in human blastocysts

    Get PDF
    Aneuploidy, a deviation from the normal chromosome copy number, is common in human embryos and is considered a primary cause of implantation failure and early pregnancy loss. Meiotic errors lead to uniformly abnormal karyotypes, while mitotic errors lead to chromosomal mosaicism: the presence of cells with at least 2 different karyotypes within an embryo. Knowledge about mosaicism in blastocysts mainly derives from bulk DNA sequencing (DNA-Seq) of multicellular trophectoderm (TE) and/or inner cell mass (ICM) samples. However, this can only detect an average net gain or loss of DNA above a detection threshold of 20%–30%. To accurately assess mosaicism, we separated the TE and ICM of 55 good-quality surplus blastocysts and successfully applied single-cell whole-genome sequencing (scKaryo-Seq) on 1,057 cells. Mosaicism involving numerical and structural chromosome abnormalities was detected in 82% of the embryos, in which most abnormalities affected less than 20% of the cells. Structural abnormalities, potentially caused by replication stress and DNA damage, were observed in 69% of the embryos. In conclusion, our findings indicated that mosaicism was prevalent in good-quality blastocysts, whereas these blastocysts would likely be identified as normal with current bulk DNA-Seq techniques used for preimplantation genetic testing for aneuploidy.</p

    Degree and site of chromosomal instability define its oncogenic potential

    Get PDF
    Most human cancers are aneuploid, due to a chromosomal instability (CIN) phenotype. Despite being hallmarks of cancer, however, the roles of CIN and aneuploidy in tumor formation have not unequivocally emerged from animal studies and are thus still unclear. Using a conditional mouse model for diverse degrees of CIN, we find that a particular range is sufficient to drive very early onset spontaneous adenoma formation in the intestine. In mice predisposed to intestinal cancer (ApcMin/+), moderate CIN causes a remarkable increase in adenoma burden in the entire intestinal tract and especially in the distal colon, which resembles human disease. Strikingly, a higher level of CIN promotes adenoma formation in the distal colon even more than moderate CIN does, but has no effect in the small intestine. Our results thus show that CIN can be potently oncogenic, but that certain levels of CIN can have contrasting effects in distinct tissues
    corecore