30 research outputs found

    Alpha One Antitrypsin Deficiency: A Pulmonary Genetic Disorder

    Get PDF

    Disparate Censorship & Undertesting: A Source of Label Bias in Clinical Machine Learning

    Full text link
    As machine learning (ML) models gain traction in clinical applications, understanding the impact of clinician and societal biases on ML models is increasingly important. While biases can arise in the labels used for model training, the many sources from which these biases arise are not yet well-studied. In this paper, we highlight disparate censorship (i.e., differences in testing rates across patient groups) as a source of label bias that clinical ML models may amplify, potentially causing harm. Many patient risk-stratification models are trained using the results of clinician-ordered diagnostic and laboratory tests of labels. Patients without test results are often assigned a negative label, which assumes that untested patients do not experience the outcome. Since orders are affected by clinical and resource considerations, testing may not be uniform in patient populations, giving rise to disparate censorship. Disparate censorship in patients of equivalent risk leads to undertesting in certain groups, and in turn, more biased labels for such groups. Using such biased labels in standard ML pipelines could contribute to gaps in model performance across patient groups. Here, we theoretically and empirically characterize conditions in which disparate censorship or undertesting affect model performance across subgroups. Our findings call attention to disparate censorship as a source of label bias in clinical ML models.Comment: 48 pages, 18 figures. Machine Learning for Healthcare Conference (MLHC 2022

    When do confounding by indication and inadequate risk adjustment bias critical care studies? A simulation study

    Get PDF
    Abstract Introduction In critical care observational studies, when clinicians administer different treatments to sicker patients, any treatment comparisons will be confounded by differences in severity of illness between patients. We sought to investigate the extent that observational studies assessing treatments are at risk of incorrectly concluding such treatments are ineffective or even harmful due to inadequate risk adjustment. Methods We performed Monte Carlo simulations of observational studies evaluating the effect of a hypothetical treatment on mortality in critically ill patients. We set the treatment to have either no association with mortality or to have a truly beneficial effect, but more often administered to sicker patients. We varied the strength of the treatment’s true effect, strength of confounding, study size, patient population, and accuracy of the severity of illness risk-adjustment (area under the receiver operator characteristics curve, AUROC). We measured rates in which studies made inaccurate conclusions about the treatment’s true effect due to confounding, and the measured odds ratios for mortality for such false associations. Results Simulated observational studies employing adequate risk-adjustment were generally able to measure a treatment’s true effect. As risk-adjustment worsened, rates of studies incorrectly concluding the treatment provided no benefit or harm increased, especially when sample size was large (n = 10,000). Even in scenarios of only low confounding, studies using the lower accuracy risk-adjustors (AUROC < 0.66) falsely concluded that a beneficial treatment was harmful. Measured odds ratios for mortality of 1.4 or higher were possible when the treatment’s true beneficial effect was an odds ratio for mortality of 0.6 or 0.8. Conclusions Large observational studies confounded by severity of illness have a high likelihood of obtaining incorrect results even after employing conventionally “acceptable” levels of risk-adjustment, with large effect sizes that may be construed as true associations. Reporting the AUROC of the risk-adjustment used in the analysis may facilitate an evaluation of a study’s risk for confounding.http://deepblue.lib.umich.edu/bitstream/2027.42/111639/1/13054_2015_Article_923.pd

    IHPI Policy Brief: Pulse oximeters are less accurate in hospitalized Black patients

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/175331/1/IHPI Policy Brief - Puse oximeters are less accurate in hosptalized Black patients - September 2022.pdfSEL
    corecore