66 research outputs found
Sparse Modeling of Landmark and Texture Variability using the Orthomax Criterion
In the past decade, statistical shape modeling has been widely popularized in the medical image analysis community. Predominantly, principal component analysis (PCA) has been employed to model biological shape variability. Here, a reparameterization with orthogonal basis vectors is obtained such that the variance of the input data is maximized. This property drives models toward global shape deformations and has been highly successful in fitting shape models to new images. However, recent literature has indicated that this uncorrelated basis may be suboptimal for exploratory analyses and disease characterization. This paper explores the orthomax class of statistical methods for transforming variable loadings into a simple structure which is more easily interpreted by favoring sparsity. Further, we introduce these transformations into a particular framework traditionally based on PCA; the Active Appearance Models (AAMs). We note that the orthomax transformations are independent of domain dimensionality (2D/3D etc.) and spatial structure. Decompositions of both shape and texture models are carried out. Further, the issue of component ordering is treated by establishing a set of relevant criteria. Experimental results are given on chest radiographs, magnetic resonance images of the brain, and face images. Since pathologies are typically spatially localized, either with respect to shape or texture, we anticipate many medical applications where sparse parameterizations are preferable to the conventional global PCA approach
SpaSM: A MATLAB Toolbox for Sparse Statistical Modeling
Applications in biotechnology such as gene expression analysis and image processing have led to a tremendous development of statistical methods with emphasis on reliable solutions to severely underdetermined systems. Furthermore, interpretations of such solutions are of importance, meaning that the surplus of inputs has been reduced to a concise model. At the core of this development are methods which augment the standard linear models for regression, classification and decomposition such that sparse solutions are obtained. This toolbox aims at making public available carefully implemented and well-tested variants of the most popular of such methods for the MATLAB programming environment. These methods consist of easy-to-read yet efficient implementations of various coefficient-path following algorithms and implementations of sparse principal component analysis and sparse discriminant analysis which are not available in MATLAB. The toolbox builds on code made public in 2005 and which has since been used in several studies
Perfusion vector - a new method to quantify myocardial perfusion scintigraphy images: a simulation study with validation in patients
The interpretation of myocardial perfusion scintigraphy (MPS) largely relies on visual assessment by the physician of the localization and extent of a perfusion defect. The aim of this study was to introduce the concept of the perfusion vector as a new objective quantitative method for further assisting the visual interpretation and to test the concept using simulated MPS images as well as patients
- …