361 research outputs found

    Improved GelSight Tactile Sensor for Measuring Geometry and Slip

    Full text link
    A GelSight sensor uses an elastomeric slab covered with a reflective membrane to measure tactile signals. It measures the 3D geometry and contact force information with high spacial resolution, and successfully helped many challenging robot tasks. A previous sensor, based on a semi-specular membrane, produces high resolution but with limited geometry accuracy. In this paper, we describe a new design of GelSight for robot gripper, using a Lambertian membrane and new illumination system, which gives greatly improved geometric accuracy while retaining the compact size. We demonstrate its use in measuring surface normals and reconstructing height maps using photometric stereo. We also use it for the task of slip detection, using a combination of information about relative motions on the membrane surface and the shear distortions. Using a robotic arm and a set of 37 everyday objects with varied properties, we find that the sensor can detect translational and rotational slip in general cases, and can be used to improve the stability of the grasp.Comment: IEEE/RSJ International Conference on Intelligent Robots and System

    Connecting Look and Feel: Associating the visual and tactile properties of physical materials

    Full text link
    For machines to interact with the physical world, they must understand the physical properties of objects and materials they encounter. We use fabrics as an example of a deformable material with a rich set of mechanical properties. A thin flexible fabric, when draped, tends to look different from a heavy stiff fabric. It also feels different when touched. Using a collection of 118 fabric sample, we captured color and depth images of draped fabrics along with tactile data from a high resolution touch sensor. We then sought to associate the information from vision and touch by jointly training CNNs across the three modalities. Through the CNN, each input, regardless of the modality, generates an embedding vector that records the fabric's physical property. By comparing the embeddings, our system is able to look at a fabric image and predict how it will feel, and vice versa. We also show that a system jointly trained on vision and touch data can outperform a similar system trained only on visual data when tested purely with visual inputs

    I Think, Therefore I am: Benchmarking Awareness of Large Language Models Using AwareBench

    Full text link
    Do large language models (LLMs) exhibit any forms of awareness similar to humans? In this paper, we introduce AwareBench, a benchmark designed to evaluate awareness in LLMs. Drawing from theories in psychology and philosophy, we define awareness in LLMs as the ability to understand themselves as AI models and to exhibit social intelligence. Subsequently, we categorize awareness in LLMs into five dimensions, including capability, mission, emotion, culture, and perspective. Based on this taxonomy, we create a dataset called AwareEval, which contains binary, multiple-choice, and open-ended questions to assess LLMs' understandings of specific awareness dimensions. Our experiments, conducted on 13 LLMs, reveal that the majority of them struggle to fully recognize their capabilities and missions while demonstrating decent social intelligence. We conclude by connecting awareness of LLMs with AI alignment and safety, emphasizing its significance to the trustworthy and ethical development of LLMs. Our dataset and code are available at https://github.com/HowieHwong/Awareness-in-LLM

    Rethinking Data Augmentation in Knowledge Distillation for Object Detection

    Full text link
    Knowledge distillation (KD) has shown its effectiveness for object detection, where it trains a compact object detector under the supervision of both AI knowledge (teacher detector) and human knowledge (human expert). However, existing studies treat the AI knowledge and human knowledge consistently and adopt a uniform data augmentation strategy during learning, which would lead to the biased learning of multi-scale objects and insufficient learning for the teacher detector causing unsatisfactory distillation performance. To tackle these problems, we propose the sample-specific data augmentation and adversarial feature augmentation. Firstly, to mitigate the impact incurred by multi-scale objects, we propose an adaptive data augmentation based on our observations from the Fourier perspective. Secondly, we propose a feature augmentation method based on adversarial examples for better mimicking AI knowledge to make up for the insufficient information mining of the teacher detector. Furthermore, our proposed method is unified and easily extended to other KD methods. Extensive experiments demonstrate the effectiveness of our framework and improve the performance of state-of-the-art methods in one-stage and two-stage detectors, bringing at most 0.5 mAP gains.Comment: 8 pages, 5 figure
    • …
    corecore