80 research outputs found

    Fourier-transformed gauge theory models of three-dimensional topological orders with gapped boundaries

    Full text link
    In this paper, we apply the method of Fourier transform and basis rewriting developed in arXiv:1910.13441 for the two-dimensional quantum double model of topological orders to the three-dimensional gauge theory model (with a gauge group GG) of three-dimensional topological orders. We find that the gapped boundary condition of the gauge theory model is characterized by a Frobenius algebra in the representation category Rep(G)\mathcal Rep(G) of GG, which also describes the charge splitting and condensation on the boundary. We also show that our Fourier transform maps the three-dimensional gauge theory model with input data GG to the Walker-Wang model with input data Rep(G)\mathcal Rep(G) on a trivalent lattice with dangling edges, after truncating the Hilbert space by projecting all dangling edges to the trivial representation of GG. This Fourier transform also provides a systematic construction of the gapped boundary theory of the Walker-Wang model. This establishes a correspondence between two types of topological field theories: the extended Dijkgraaf-Witten and extended Crane-Yetter theories.Comment: 39 pages, 9 figure

    Task-Agnostic Structured Pruning of Speech Representation Models

    Full text link
    Self-supervised pre-trained models such as Wav2vec2, Hubert, and WavLM have been shown to significantly improve many speech tasks. However, their large memory and strong computational requirements hinder their industrial applicability. Structured pruning is a hardware-friendly model compression technique but usually results in a larger loss of accuracy. In this paper, we propose a fine-grained attention head pruning method to compensate for the performance degradation. In addition, we also introduce the straight through estimator into the L0 regularization to further accelerate the pruned model. Experiments on the SUPERB benchmark show that our model can achieve comparable performance to the dense model in multiple tasks and outperforms the Wav2vec 2.0 base model on average, with 72% fewer parameters and 2 times faster inference speed.Comment: Accepted by INTERSPEECH 202

    MetaTool Benchmark for Large Language Models: Deciding Whether to Use Tools and Which to Use

    Full text link
    Large language models (LLMs) have garnered significant attention due to their impressive natural language processing (NLP) capabilities. Recently, many studies have focused on the tool utilization ability of LLMs. They primarily investigated how LLMs effectively collaborate with given specific tools. However, in scenarios where LLMs serve as intelligent agents, as seen in applications like AutoGPT and MetaGPT, LLMs are expected to engage in intricate decision-making processes that involve deciding whether to employ a tool and selecting the most suitable tool(s) from a collection of available tools to fulfill user requests. Therefore, in this paper, we introduce MetaTool, a benchmark designed to evaluate whether LLMs have tool usage awareness and can correctly choose tools. Specifically, we create a dataset called ToolE within the benchmark. This dataset contains various types of user queries in the form of prompts that trigger LLMs to use tools, including both single-tool and multi-tool scenarios. Subsequently, we set the tasks for both tool usage awareness and tool selection. We define four subtasks from different perspectives in tool selection, including tool selection with similar choices, tool selection in specific scenarios, tool selection with possible reliability issues, and multi-tool selection. We conduct experiments involving nine popular LLMs and find that the majority of them still struggle to effectively select tools, highlighting the existing gaps between LLMs and genuine intelligent agents. However, through the error analysis, we found there is still significant room for improvement. Finally, we conclude with insights for tool developers that follow ChatGPT to provide detailed descriptions that can enhance the tool selection performance of LLMs

    Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH -Mutant Molecular Profiles

    Get PDF
    Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance
    • …
    corecore