347 research outputs found

    Optimal Micro-siting of Wind Turbines in an Offshore Wind Farm Using Frandsen-Gaussian Wake Model

    Get PDF

    Topology design of an offshore wind farm with multiple types of wind turbines in a circular layout

    Get PDF
    The advances in the manufacturing industry make it possible to install wind turbines (WTs) with large capacities in offshore wind farms (OWFs) in deep water areas far away from the coast where there are the best wind resources. This paper proposes a novel method for OWF optimal planning in deep water areas with a circular boundary. A three-dimensional model of the planning area’s seabed is established in a cylindrical coordinate. Two kinds of WTs with capacities of 4 and 8 MW respectively are supposed to be mixed-installed in that area. Baseline cases are analyzed and compared to verify the superiority of a circular layout pattern and the necessity of a non-uniform installation. Based on the establishment of the optimization model and a realistic wind condition, a novel heuristic algorithm, i.e., the whale optimization algorithm (WOA), is applied to solve the problem to obtain the type selection and coordinates of WTs simultaneously. Finally, the feasibility and advantages of the proposed scheme are identified and discussed according to the simulation results

    Wind farm repowering optimization: a techno‐economic‐aesthetic approach

    Get PDF
    When a wind farm (WF) approaches the end of its life cycle, repowering is another opportunity for wind energy to prove its value. This paper proposes an optimization framework to guide the WF repowering, considering the power generation, the economic cost, and the aesthetic of the WF when various types of new wind turbines (WTs) are added. When calculating the wake deficits inside the WF, a three‐dimensional (3‐D) Gaussian wake model is applied which considers the height differences among the new WTs. A harmony pattern metric is used to assess the visual impact of the rebuilt WF. This optimization problem is formulated as an integer programming (IP) problem and is tackled by the integer particle swarm optimization (IPSO) algorithm. The wind data used for this optimization procedure is predicted by the auto‐regressive (AR) model. The case study on the OWEZ WF verifies the effectiveness of the proposed method. It is also validated that the application of predicted wind data is better than the historical data for WF repowering optimization.National Natural Science Foundation of Chin

    Controllable electromechanical stability of a torsional micromirror actuator with piezoelectric composite structure under capillary force

    Get PDF
    Various types of micro/nano functional devices are being widely designed as optical switches, micro scanners, micromirrors and other core optical devices. The continuing miniaturization of the functional devices makes the size dependence of electromechanical property significant in micro/nano scale due to the sharp increase of surface interactions such as capillary force from liquid bridge, van der Waals and Casimir forces from quantum fluctuations. The surface interactions can cause the pull-in instability, adhesion between parts, and even failure of device. This work provides an active control method to avoid the pull-in instability of an electrostatically driven circular micromirror by applying voltage on a torsional piezoelectric composite structure. The influences of the three types are compared of dispersion forces on the electromechanical stability of the micromirror actuator. A comprehensive electromechanical model of a torsional piezoelectric beam was established to numerically investigate the electromechanical coupling of the micromirror. The results show that the influence of capillary force on the stability of the micromirror is as significant as van der Waals force and Casimir force. By introducing piezoelectric nanoplates into the laminated torsional structure, the micromirror stability can be controlled based on the piezoelectric effect of the torsional piezoelectric composite structure. This work can contribute to the structural optimization design and manufacture of micromirror systems.Cited as: Liu, M., Chen, Y., Cheng, W., Chen, S., Yu, T., Yang, W. Controllable electromechanical stability of a torsional micromirror actuator with piezoelectric composite structure under capillary force. Capillarity, 2022, 5(3): 51-64. https://doi.org/10.46690/capi.2022.03.0

    Explaining Income-Related Inequalities in Dietary Knowledge: Evidence from the China Health and Nutrition Survey

    Get PDF
    Lack of adequate dietary knowledge may result in poor health conditions. This study aims to measure income-related inequality in dietary knowledge, and to explain the sources of the inequality. Data were from the China Health and Nutrition Survey (CHNS) conducted in 2015. A summary of the dietary knowledge score and dietary guideline awareness was used to measure the dietary knowledge of respondents. The concentration index was employed as a measure of socioeconomic inequality and was decomposed into its determining factors. The study found that the proportion of respondents who correctly answered questions on dietary knowledge was significantly low for some questions. Compared to rural residents, urban residents had a higher proportion of correctly answered dietary knowledge questions. In addition, there are pro-rich inequalities in dietary knowledge. This observed inequality is determined not only by individual factors but also high-level area factors. Our study recommends that future dietary education programs could take different strategies for individuals with different educational levels and focus more on disadvantaged people. It would be beneficial to consider local dietary habits in developing education materials
    corecore