52 research outputs found

    Role of Cytokines and Chemokines in Alcohol-Induced Tumor Promotion

    Get PDF
    Excessive chronic alcohol consumption has become a worldwide health problem. The oncogenic effect of chronic alcohol consumption is one of the leading concerns. The mechanisms of alcohol-induced tumorigenesis and tumor progression are largely unknown, although many factors have been implicated in the process. This review discusses the recent progress in this research area with concentration on alcohol-induced dysregulation of cytokines and chemokines. Based on the available evidence, we propose that alcohol promotes tumor progression by the dysregulation of the cytokine/chemokine system. In addition, we discuss specific transcription factors and signaling pathways that are involved in the action of these cytokines/chemokines and the oncogenic effect of alcohol. This review provides novel insight into the mechanisms of alcohol-induced tumor promotion

    Alcohol Promotes Mammary Tumor Growth through Activation of VEGF-Dependent Tumor Angiogenesis

    Get PDF
    Alcohol consumption has been recognized as a risk factor for breast cancer. Experimental studies demonstrate that alcohol exposure promotes the progression of existing mammary tumors. However, the mechanisms underlying this effect remain unclear. In the present study, the role of vascular endothelial growth factor (VEGF) in alcohol promotion of breast cancer development was investigated using a mouse xenograft model of mammary tumors and a three-dimensional (3D) tumor/endothelial cell co-culture system. For the mouse xenograft model, mouse E0771 breast cancer cells were implanted into the mammary fat pad of C57BL6 mice. These mice were exposed to alcohol in their drinking water. For the 3D co-culture system, E0771 cells and MDA-MB231 breast cancer cells were co-cultured with SVEC4-10EE2 and human umbilical vein endothelial cells, respectively. The results demonstrated that alcohol increased tumor angiogenesis and accelerated tumor growth. Furthermore, it appeared that alcohol induced VEGF expression in breast cancer cells in vitro and in vivo. Blocking VEGF signaling by SU5416 inhibited tumor angiogenesis in the 3D tumor/endothelial cell co-culture system. Furthermore, injection of SU5416 into mice inhibited alcohol-promoted mammary tumor growth in vivo. These results indicate that alcohol may promote mammary tumor growth by stimulating VEGF-dependent angiogenesis

    Herb-Drug Interaction: Effects of Relinqing® Granule on the Pharmacokinetics of Ciprofloxacin, Sulfamethoxazole, and Trimethoprim in Rats

    Get PDF
    Relinqing granule (RLQ) is the best-selling Chinese patent drug for treatment of urinary system diseases. In this study, the effects of RLQ on the pharmacokinetics of ciprofloxacin, sulfamethoxazole, and trimethoprim in SD rats were investigated. Rats were randomly divided into control group 1, control group 2, RLQ group 1, and RLQ group 2. RLQ group 1 and RLQ group 2 were treated orally with RLQ for 7 days, and rats were treated with the same volume of water in control group 1 and control group 2. Then, RLQ group 1 and control group 1 were given intragastrically ciprofloxacin on day 8, while RLQ group 2 and control group 2 were given intragastrically sulfamethoxazole and trimethoprim on day 8. Blood samples were collected and determined. There was no significant influence of pharmacokinetic parameters of trimethoprim on two groups. But some pharmacokinetic parameters of ciprofloxacin and sulfamethoxazole in RLQ pretreated rats were evidently altered (P < 0.05), which indicated that absorption of ciprofloxacin and sulfamethoxazole in RLQ pretreated rats was significantly affected. It indicated the coadministration of RLQ would have an influence on the efficacy of ciprofloxacin and sulfamethoxazole, and the doses of ciprofloxacin tablet and compound sulfamethoxazole tablet need adjustment

    Double-Stranded RNA-Dependent Protein Kinase Regulates the Motility of Breast Cancer Cells

    Get PDF
    Double-stranded RNA (dsRNA)-dependent protein kinase (PKR) is an interferon-induced protein kinase that plays a central role in the anti-viral process. Due to its pro-apoptotic and anti-proliferative action, there is an increased interest in PKR modulation as an anti-tumor strategy. PKR is overexpressed in breast cancer cells; however, the role of PKR in breast cancer cells is unclear. The expression/activity of PKR appears inversely related to the aggressiveness of breast cancer cells. The current study investigated the role of PKR in the motility/migration of breast cancer cells. The activation of PKR by a synthesized dsRNA (PIC) significantly decreased the motility of several breast cancer cell lines (BT474, MDA-MB231 and SKBR3). PIC inhibited cell migration and blocked cell membrane ruffling without affecting cell viability. PIC also induced the reorganization of the actin cytoskeleton and impaired the formation of lamellipodia. These effects of PIC were reversed by the pretreatment of a selective PKR inhibitor. PIC also activated p38 mitogen-activated protein kinase (MAPK) and its downstream MAPK-activated protein kinase 2 (MK2). PIC-induced activation of p38 MAPK and MK2 was attenuated by the PKR inhibitor and the PKR siRNA, but a selective p38 MAPK inhibitor (SB203580) or other MAPK inhibitors did not affect PKR activity, indicating that PKR is upstream of p38 MAPK/MK2. Cofilin is an actin severing protein and regulates membrane ruffling, lamellipodia formation and cell migration. PIC inhibited cofilin activity by enhancing its phosphorylation at Ser3. PIC activated LIM kinase 1 (LIMK1), an upstream kinase of cofilin in a p38 MAPK-dependent manner. We concluded that the activation of PKR suppressed cell motility by regulating the p38 MAPK/MK2/LIMK/cofilin pathway

    Alcohol Consumption Promotes Colorectal Carcinoma Metastasis via a CCL5-Induced and AMPK-Pathway-Mediated Activation of Autophagy

    Get PDF
    There is a definite relationship between alcohol consumption and colorectal cancer (CRC) development. We investigated effect of alcohol consumption on CRC patients’ progression and prognosis by utilizing epidemiological data and found patients with alcohol consumption increased risks of tumor-node-metastasis (TNM), organ metastasis and poorer prognosis. Because their tumor tissues displayed increased expression of C-C chemokine ligand 5 (CCL5), we hypothesized CCL5 might participate in cancer progression in such patients. Ethanol increased the secretion of CCL5 in two CRC cell lines, HT29 and DLD-1. Treatment with CCL5 directly increased migratory ability of these cells, whereas neutralization or knockdown of CCL5 can partially block alcohol-stimulated migration. We further investigated underlying mechanism of CCL5-induced migration. Our results indicated that effects of CCL5 on migration are mediated by the ability of CCL5 to induce autophagy, a cellular process known to be critical for migration. Using high-throughput sequencing and western blotting, we found induction of autophagy by CCL5 takes place via AMPK pathway. Aforementioned ethanol increases CCL5 secretion, CCL5 activates autophagy through AMPK pathway, and autophagy increases migration was confirmed by experiments with autophagy or AMPK inhibitors. To sum up, our study demonstrates that chronic alcohol consumption may promote metastasis of CRC through CCL5-induced autophagy

    Chronic Ethanol Exposure Enhances the Aggressiveness of Breast Cancer: The Role of p38γ

    Get PDF
    Both epidemiological and experimental studies suggest that ethanol may enhance aggressiveness of breast cancer. We have previously demonstrated that short term exposure to ethanol (12–48 hours) increased migration/invasion in breast cancer cells overexpressing ErbB2, but not in breast cancer cells with low expression of ErbB2, such as MCF7, BT20 and T47D breast cancer cells. In this study, we showed that chronic ethanol exposure transformed breast cancer cells that were not responsive to short term ethanol treatment to a more aggressive phenotype. Chronic ethanol exposure (10 days - 2 months) at 100 (22 mM) or 200 mg/dl (44 mM) caused the scattering of MCF7, BT20 and T47D cell colonies in a 3-dimension culture system. Chronic ethanol exposure also increased colony formation in an anchorage-independent condition and stimulated cell invasion/migration. Chronic ethanol exposure increased cancer stem-like cell (CSC) population by more than 20 folds. Breast cancer cells exposed to ethanol in vitro displayed a much higher growth rate and metastasis in mice. Ethanol selectively activated p38γ MAPK and RhoC but not p38α/β in a concentration-dependent manner. SP-MCF7 cells, a derivative of MCF7 cells which compose mainly CSC expressed high levels of phosphorylated p38γ MAPK. Knocking-down p38γ MAPK blocked ethanol-induced RhoC activation, cell scattering, invasion/migration and ethanol-increased CSC population. Furthermore, knocking-down p38γ MAPK mitigated ethanol-induced tumor growth and metastasis in mice. These results suggest that chronic ethanol exposure can enhance the aggressiveness of breast cancer by activating p38γ MAPK/RhoC pathway

    ErbB2 and p38γ MAPK Mediate Alcohol-Induced Increase in Breast Cancer Stem Cells and Metastasis

    Get PDF
    Background: Both epidemiological and experimental studies suggest that excessive alcohol exposure increases the risk for breast cancer and enhances metastasis/recurrence. We have previously demonstrated that alcohol enhanced the migration/invasion of breast cancer cells and cancer cells overexpressing ErbB2/HER2 were more sensitive to alcohol exposure. However, the underlying mechanisms remain unclear. This study was designed to investigate the mechanisms underlying alcohol-enhanced aggressiveness of breast cancer. Cancer stem cells (CSCs) play a critical role in cancer metastasis and recurrence. Methods: We evaluated the effect of chronic alcohol exposure on mammary tumor development/metastasis in MMTV-neu transgenic mice and investigated the cell signaling in response to alcohol exposure in breast cancer cells overexpressing ErbB2/HER2. Results and discussion: Chronic alcohol exposure increased breast cancer stem cell-like CSC population and enhanced the lung and colon metastasis in MMTV-neu transgenic mice. Alcohol exposure caused a drastic increase in CSC population and mammosphere formation in breast cancer cells overexpressing ErbB2/HER2. Alcohol exposure stimulated the phosphorylation of p38γ MAPK (p-p38γ) which was co-localized with phosphorylated ErbB2 and CSCs in the mammary tumor tissues. In vitro results confirmed that alcohol activated ErbB2/HER2 and selectively increased p-p38γ MAPK as well as the interaction between p38γ MAPK and its substrate, SAP97. However, alcohol did not affect the expression/phosphorylation of p38α/β MAPKs. In breast cancer cell lines, high expression of ErbB2 and p-p38γ MAPK was generally correlated with more CSC population. Blocking ErbB2 signaling abolished heregulin β1- and alcohol-stimulated p-p38γ MAPK and its association with SAP97. More importantly, p38γ MAPK siRNA significantly inhibited an alcohol-induced increase in CSC population, mammosphere formation and migration/invasion of breast cancer cells overexpressing ErbB2. Conclusions: p38γ MAPK is downstream of ErbB2 and plays an important role in alcohol-enhanced aggressiveness of breast cancer. Therefore, in addition to ErbB2/HER2, p38γ MAPK may be a potential target for the treatment of alcohol-enhanced cancer aggressiveness

    Cyanidin-3-Glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ethanol is a tumor promoter. Both epidemiological and experimental studies suggest that ethanol may enhance the metastasis of breast cancer cells. We have previously demonstrated that ethanol increased the migration/invasion of breast cancer cells expressing high levels of ErbB2. Amplification of ErbB2 is found in 20-30% of breast cancer patients and is associated with poor prognosis. We sought to identify agents that can prevent or ameliorate ethanol-induced invasion of breast cancer cells. Cyanidin-3-glucoside (C3G), an anthocyanin present in many vegetables and fruits, is a potent natural antioxidant. Ethanol exposure causes the accumulation of intracellular reactive oxygen species (ROS). This study evaluated the effect of C3G on ethanol-induced breast cancer cell migration/invasion.</p> <p>Results</p> <p>C3G attenuated ethanol-induced migration/invasion of breast cancer cells expressing high levels of ErbB2 (BT474, MDA-MB231 and MCF7<sup>ErbB2</sup>) in a concentration dependent manner. C3G decreased ethanol-mediated cell adhesion to the extracellular matrix (ECM) as well as the amount of focal adhesions and the formation of lamellipodial protrusion. It inhibited ethanol-stimulated phosphorylation of ErbB2, cSrc, FAK and p130<sup>Cas</sup>, as well as interactions among these proteins. C3G abolished ethanol-mediated p130<sup>Cas</sup>/JNK interaction.</p> <p>Conclusions</p> <p>C3G blocks ethanol-induced activation of the ErbB2/cSrc/FAK pathway which is necessary for cell migration/invasion. C3G may be beneficial in preventing/reducing ethanol-induced breast cancer metastasis.</p

    Comprehensive analysis of the amino acid metabolism-related gene signature for prognosis, tumor immune microenvironment, and candidate drugs in hepatocellular carcinoma

    Get PDF
    IntroductionMetabolic rewiring satisfies increased nutritional demands and modulates many oncogenic processes in tumors. Amino acid metabolism is abnormal in many malignancies. Metabolic reprogramming of amino acids not only plays a crucial role in sustaining tumor cell proliferation but also influences the tumor immune microenvironment. Herein, the aim of our study was to elucidate the metabolic signature of amino acids in hepatocellular carcinoma (HCC).MethodsTranscriptome profiles of HCC were obtained from the TCGA and ICGC databases. Based on the expression of amino acid metabolism-related genes (AAMRGs), we clustered the HCC samples into two molecular subtypes using the non-negative matrix factorization algorithm. Then, we constructed the amino acid metabolism-related gene signature (AAMRGS) by Cox regression and LASSO regression. Afterward, the clinical significance of the AAMRGS was evaluated. Additionally, we comprehensively analyzed the differences in mutational profiles, immune cell infiltration, immune checkpoint expression, and drug sensitivity between different risk subgroups. Furthermore, we examined three key gene expressions in liver cancer cells by quantitative real-time PCR and conducted the CCK8 assay to evaluate the influence of two chemotherapy drugs on different liver cancer cells.ResultsA total of 81 differentially expressed AAMRGs were screened between the two molecular subtypes, and these AAMRGs were involved in regulating amino acid metabolism. The AAMRGS containing GLS, IYD, and NQO1 had a high value for prognosis prediction in HCC patients. Besides this, the two AAMRGS subgroups had different genetic mutation probabilities. More importantly, the immunosuppressive cells were more enriched in the AAMRGS-high group. The expression level of inhibitory immune checkpoints was also higher in patients with high AAMRGS scores. Additionally, the two AAMRGS subgroups showed different susceptibility to chemotherapeutic and targeted drugs. In vitro experiments showed that gemcitabine significantly reduced the proliferative capacity of SNU449 cells, and rapamycin remarkedly inhibited Huh7 proliferation. The five HCC cells displayed different mRNA expression levels of GLS, IYD, and NQO1.ConclusionsOur study explored the features of amino acid metabolism in HCC and identified the novel AAMRGS to predict the prognosis, immune microenvironment, and drug sensitivity of HCC patients. These findings might help to guide personalized treatment and improve the clinical outcomes of HCC

    Essays on China’s Housing Market

    Get PDF
    corecore