6 research outputs found

    Conditional Score-Based Diffusion Model for Cortical Thickness Trajectory Prediction

    Full text link
    Alzheimer's Disease (AD) is a neurodegenerative condition characterized by diverse progression rates among individuals, with changes in cortical thickness (CTh) closely linked to its progression. Accurately forecasting CTh trajectories can significantly enhance early diagnosis and intervention strategies, providing timely care. However, the longitudinal data essential for these studies often suffer from temporal sparsity and incompleteness, presenting substantial challenges in modeling the disease's progression accurately. Existing methods are limited, focusing primarily on datasets without missing entries or requiring predefined assumptions about CTh progression. To overcome these obstacles, we propose a conditional score-based diffusion model specifically designed to generate CTh trajectories with the given baseline information, such as age, sex, and initial diagnosis. Our conditional diffusion model utilizes all available data during the training phase to make predictions based solely on baseline information during inference without needing prior history about CTh progression. The prediction accuracy of the proposed CTh prediction pipeline using a conditional score-based model was compared for sub-groups consisting of cognitively normal, mild cognitive impairment, and AD subjects. The Bland-Altman analysis shows our diffusion-based prediction model has a near-zero bias with narrow 95% confidential interval compared to the ground-truth CTh in 6-36 months. In addition, our conditional diffusion model has a stochastic generative nature, therefore, we demonstrated an uncertainty analysis of patient-specific CTh prediction through multiple realizations

    Implicit Image-to-Image Schrodinger Bridge for CT Super-Resolution and Denoising

    Full text link
    Conditional diffusion models have gained recognition for their effectiveness in image restoration tasks, yet their iterative denoising process, starting from Gaussian noise, often leads to slow inference speeds. As a promising alternative, the Image-to-Image Schr\"odinger Bridge (I2SB) initializes the generative process from corrupted images and integrates training techniques from conditional diffusion models. In this study, we extended the I2SB method by introducing the Implicit Image-to-Image Schrodinger Bridge (I3SB), transitioning its generative process to a non-Markovian process by incorporating corrupted images in each generative step. This enhancement empowers I3SB to generate images with better texture restoration using a small number of generative steps. The proposed method was validated on CT super-resolution and denoising tasks and outperformed existing methods, including the conditional denoising diffusion probabilistic model (cDDPM) and I2SB, in both visual quality and quantitative metrics. These findings underscore the potential of I3SB in improving medical image restoration by providing fast and accurate generative modeling

    Preliminary Study for Designing a Novel Vein-Visualizing Device

    No full text
    Venipuncture is an important health diagnosis process. Although venipuncture is one of the most commonly performed procedures in medical environments, locating the veins of infants, obese, anemic, or colored patients is still an arduous task even for skilled practitioners. To solve this problem, several devices using infrared light have recently become commercially available. However, such devices for venipuncture share a common drawback, especially when visualizing deep veins or veins of a thick part of the body like the cubital fossa. This paper proposes a new vein-visualizing device applying a new penetration method using near-infrared (NIR) light. The light module is attached directly on to the declared area of the skin. Then, NIR beam is rayed from two sides of the light module to the vein with a specific angle. This gives a penetration effect. In addition, through an image processing procedure, the vein structure is enhanced to show it more accurately. Through a phantom study, the most effective penetration angle of the NIR module is decided. Additionally, the feasibility of the device is verified through experiments in vivo. The prototype allows us to visualize the vein patterns of thicker body parts, such as arms
    corecore