36 research outputs found

    Global trends in COVID-19 Alzheimer's related research: a bibliometric analysis

    Get PDF
    BackgroundThe COVID-19 pandemic has significantly impacted public health, putting people with Alzheimer's disease at significant risk. This study used bibliometric analysis method to conduct in-depth research on the relationship between COVID-19 and Alzheimer's disease, as well as to predict its development trends.MethodsThe Web of Science Core Collection was searched for relevant literature on Alzheimer's and Coronavirus-19 during 2019–2023. We used a search query string in our advanced search. Using Microsoft Excel 2021 and VOSviewer software, a statistical analysis of primary high-yield authors, research institutions, countries, and journals was performed. Knowledge networks, collaboration maps, hotspots, and regional trends were analyzed using VOSviewer and CiteSpace.ResultsDuring 2020–2023, 866 academic studies were published in international journals. United States, Italy, and the United Kingdom rank top three in the survey; in terms of productivity, the top three schools were Harvard Medical School, the University of Padua, and the University of Oxford; Bonanni, Laura, from Gabriele d'Annunzio University (Italy), Tedeschi, Gioacchino from the University of Campania Luigi Vanvitelli (Italy), Vanacore, Nicola from Natl Ctr Dis Prevent and Health Promot (Italy), Reddy, P. Hemachandra from Texas Tech University (USA), and El Haj, Mohamad from University of Nantes (France) were the authors who published the most articles; The Journal of Alzheimer's Disease is the journals with the most published articles; “COVID-19,” “Alzheimer's disease,” “neurodegenerative diseases,” “cognitive impairment,” “neuroinflammation,” “quality of life,” and “neurological complications” have been the focus of attention in the last 3 years.ConclusionThe disease caused by the COVID-19 virus infection related to Alzheimer's disease has attracted significant attention worldwide. The major hot topics in 2020 were: “Alzheimer' disease,” COVID-19,” risk factors,” care,” and “Parkinson's disease.” During the 2 years 2021 and 2022, researchers were also interested in “neurodegenerative diseases,” “cognitive impairment,” and “quality of life,” which require further investigation

    Masson pine pollen aqueous extract ameliorates cadmium-induced kidney damage in rats

    Get PDF
    Introduction: Cadmium (Cd) is a hazardous environmental pollutant present in soil, water, and food. Accumulation of Cd in organisms can cause systematic injury and damage to the kidney. The Masson pine pollen aqueous extract (MPPAE) has attracted increasing attention due to its antioxidant activity and ability to enhance immunity.Methods: In this study, we investigated the potential of MPPAE to protect against Cd-induced kidney damage in rats and the underlying mechanism. The transcriptome and metabolome of rats with Cd-induced kidney damage, following treatment with MPPAE, were explored.Results: The concentrations of superoxide dismutase (SOD) and malondialdehyde (MDA) were both significantly altered after treatment with MPPAE. Furthermore, sequencing and analysis of the transcriptome and metabolome of rats with Cd-induced kidney damage, following treatment with MPPAE, revealed differential expression of numerous genes and metabolites compared with the untreated control rats. These differentially expressed genes (DEGs) included detoxification-related genes such as cytochrome P450 and the transporter. The differentially expressed metabolites (DEMs) included 4-hydroxybenzoic acid, L-ascorbate, and ciliatine. Conjoint transcriptome and metabolome analysis showed that several DEGs were correlated with DEMs.Conclusion: These preliminary findings indicate the potential of MPPAE for the treatment of toxic metal poisoning

    Engineering Microbial Consortia for High-Performance Cellulosic Hydrolyzates-Fed Microbial Fuel Cells

    Get PDF
    Microbial fuel cells (MFCs) are eco-friendly bio-electrochemical reactors that use exoelectrogens as biocatalyst for electricity harvest from organic biomass, which could also be used as biosensors for long-term environmental monitoring. Glucose and xylose, as the primary ingredients from cellulose hydrolyzates, is an appealing substrate for MFC. Nevertheless, neither xylose nor glucose can be utilized as carbon source by well-studied exoelectrogens such as Shewanella oneidensis. In this study, to harvest the electricity by rapidly harnessing xylose and glucose from corn stalk hydrolysate, we herein firstly designed glucose and xylose co-fed engineered Klebsiella pneumoniae-S. oneidensis microbial consortium, in which K. pneumoniae as the fermenter converted glucose and xylose into lactate to feed the exoelectrogens (S. oneidensis). To produce more lactate in K. pneumoniae, we eliminated the ethanol and acetate pathway via deleting pta (phosphotransacetylase gene) and adhE (alcohol dehydrogenase gene) and further constructed a synthesis and delivery system through expressing ldhD (lactate dehydrogenase gene) and lldP (lactate transporter gene). To facilitate extracellular electron transfer (EET) of S. oneidensis, a biosynthetic flavins pathway from Bacillus subtilis was expressed in a highly hydrophobic S. oneidensis CP-S1, which not only improved direct-contacted EET via enhancing S. oneidensis adhesion to the carbon electrode but also accelerated the flavins-mediated EET via increasing flavins synthesis. Furthermore, we optimized the ratio of glucose and xylose concentration to provide a stable carbon source supply in MFCs for higher power density. The glucose and xylose co-fed MFC inoculated with the recombinant consortium generated a maximum power density of 104.7 ± 10.0 mW/m2, which was 7.2-folds higher than that of the wild-type consortium (12.7 ± 8.0 mW/m2). Lastly, we used this synthetic microbial consortium in the corn straw hydrolyzates-fed MFC, obtaining a power density 23.5 ± 6.0 mW/m2

    Application of Laplace Domain Waveform Inversion to Cross-Hole Radar Data

    No full text
    Full waveform inversion (FWI) can yield high resolution images and has been applied in Ground Penetrating Radar (GPR) for around 20 years. However, appropriate selection of the initial models is important in FWI because such an inversion is highly nonlinear. The conventional way to obtain the initial models for GPR FWI is ray-based tomogram inversion which suffers from several inherent shortcomings. In this paper, we develop a Laplace domain waveform inversion to obtain initial models for the time domain FWI. The gradient expression of the Laplace domain waveform inversion is deduced via the derivation of a logarithmic object function. Permittivity and conductivity are updated by using the conjugate gradient method. Using synthetic examples, we found that the value of the damping constant in the inversion cannot be too large or too small compared to the dominant frequency of the radar data. The synthetic examples demonstrate that the Laplace domain waveform inversion provide slightly better initial models for the time domain FWI than the ray-based inversion. Finally, we successfully applied the algorithm to one field data set, and the inverted results of the Laplace-based FWI show more details than that of the ray-based FWI

    A neural network approach to fault diagnosis in analog circuits

    No full text

    Identification of Phytogenic Compounds with Antioxidant Action That Protect Porcine Intestinal Epithelial Cells from Hydrogen Peroxide Induced Oxidative Damage

    No full text
    Oxidative stress contributes to intestinal dysfunction. Plant extracts can have antioxidant action; however, the specific phytogenic active ingredients and their potential mechanisms are not well known. We screened 845 phytogenic compounds using a porcine epithelial cell (IPEC-J2) oxidative stress model to identify oxidative-stress-alleviating compounds. Calycosin and deoxyshikonin were evaluated for their ability to alleviate H2O2-induced oxidative stress by measuring their effects on malondialdehyde (MDA) accumulation, reactive oxygen species (ROS) generation, apoptosis, mitochondrial membrane potential (MMP), and antioxidant defense. Nrf2 pathway activation and the effect of Nrf2 knockdown on the antioxidative effects of hit compounds were investigated. Calycosin protected IPEC-J2 cells against H2O2-induced oxidative damage, likely by improving the cellular redox state and upregulating antioxidant defense via the Nrf2-Keap1 pathway. Deoxyshikonin alleviated the H2O2-induced decrease in cell viability, ROS production, and MMP reduction, but had no significant effect on MDA accumulation and apoptosis. Nrf2 knockdown did not weaken the effect of deoxyshikonin in improving cell viability, but it weakened its effect in suppressing ROS production. These results indicate that the mechanisms of action of natural compounds differ. The newly identified phytogenic compounds can be developed as novel antioxidant agents to alleviate intestinal oxidative stress in animals

    Key Microbiota Identification Using Functional Gene Analysis during Pepper (Piper nigrum L.) Peeling.

    No full text
    Pepper pericarp microbiota plays an important role in the pepper peeling process for the production of white pepper. We collected pepper samples at different peeling time points from Hainan Province, China, and used a metagenomic approach to identify changes in the pericarp microbiota based on functional gene analysis. UniFrac distance-based principal coordinates analysis revealed significant changes in the pericarp microbiota structure during peeling, which were attributed to increases in bacteria from the genera Selenomonas and Prevotella. We identified 28 core operational taxonomic units at each time point, mainly belonging to Selenomonas, Prevotella, Megasphaera, Anaerovibrio, and Clostridium genera. The results were confirmed by quantitative polymerase chain reaction. At the functional level, we observed significant increases in microbial features related to acetyl xylan esterase and pectinesterase for pericarp degradation during peeling. These findings offer a new insight into biodegradation for pepper peeling and will promote the development of the white pepper industry

    Application of Time-Domain Full Waveform Inversion to Cross-Hole Radar Data Measured at Xiuyan Jade Mine, China

    No full text
    Xiuyan Jade, produced in Xiuyan County, Liaoning Province, China is one of the four famous jade in China. King Jade, which is deemed the largest jade body of the world, was broken out from a hill. The local government planned to build a tourism site based on the jade culture there. The purpose of the investigation was to evaluate the stability of subsurface foundation, and the possible positions of mined-out zones to prevent the further rolling of the jade body. Cross-hole radar tomography is the key technique in the investigation. Conventional travel time and attenuation tomography based on ray tracing theory cannot provide high-resolution images because only a fraction of the measured information is used in the inversion. Full-waveform inversion (FWI) can provide high-resolution permittivity and conductivity images because it utilizes all the information provided by the radar signals. We deduce the gradient expression of the time-domain FWI with respect to the permittivity and conductivity using a method that is different from that of the previous work and realize the FWI algorithm that can simultaneously update the permittivity and conductivity by using the conjugate gradient method. Inverted results from synthetic data show that time-domain FWI can significantly improve the resolution compared with the ray-based tomogram methods. FWI can distinguish targets that are as small as one-half to one-third wavelength and the inverted physical values are closer to the real ones than those provided by the ray tracing method. We use the FWI algorithm to the field data measured at Xiuyan jade mine. Both the inverted permittivity and conductivity can comparably delineate four mined-out zones, which exhibit low-permittivity and low-conductivity characteristics. Furthermore, the locations of the interpreted mined-out zones are in good agreement with the existing mining channels recorded by geological data

    Phytoremediation of Secondary Salinity in Greenhouse Soil with Astragalus sinicus, Spinacea oleracea and Lolium perenne

    No full text
    Phytoremediation is an effective and ecological method used to control soil secondary salinization in greenhouses. However, the plant–soil interactions for phytoremediation have not been studied sufficiently. In this study, three crop species (Astragalus sinicus (CM), Spinacea oleracea (SP) and Lolium perenne (RY)) were compared in a greenhouse experiment. The results showed that all three crops increased the soil microbial biomass, the abundance of beneficial microorganisms, available phosphorus and soil pH, and reduced the soil salt content. The crop nutrient accumulation was positively correlated with the relative abundance of bacterial 16S rRNA sequences in the soil. CM and RY respectively increased the relative abundances of norank_f_Gemmatimonadaceae and norank_f_Anaerolineaceae within the soil bacterial community, while SP increased the relative abundances of Gibellulopsis within the fungal community. Correlation analysis revealed that pH and total dissolved salts were the vital factors affecting soil microbial communities in the secondary salinized soil. Our results suggest that phytoremediation could effectively alleviate secondary salinization by regulating the balance of soil microbial community composition and promoting crop nutrient accumulation
    corecore