2 research outputs found

    Impact of the Westerly Jet on Rainfall/Runoff in the Source Region of the Yangtze River during the Flood Season

    No full text
    Based on runoff data collected at the Zhimenda station, reanalysis data from the National Centers of Environmental Prediction/National Centers of Atmospheric Research (NCEP/NCAR), and observation data from ground stations in China, this study analyzes the characteristics of changes in runoff in the source region of the Yangtze River (SRYR) during the flood season (from July to September), the relationship between runoff and antecedent rainfall, and the impact of the westerly jet (WJ) on rainfall in the coastal zone of the SRYR. The results show the following. The runoff in the SRYR displays a significant interannual and interdecadal variability. The runoff in the SRYR during the flood season is most closely related to 15-day (June 16 to September 15) antecedent rainfall in the coastal zone of the SRYR. In turn, the antecedent rainfall in the coastal zone of the SRYR is mainly affected by the intensity of the simultaneous WJ over a key region (55–85°E, 45–55°N). When the intensity of the WJ over the key region is greater (less) than normal, the jet position moves northward (southward), and the easterly (westerly) wind anomalies over the region to the west of the SRYR become unfavorable (favorable) to the transport of water vapor from high-latitude regions to the SRYR. In addition, the southerly wind over the equatorial region cannot (can) easily advance northward, which is unfavorable (favorable) to the northward transport of water vapor from the low-latitude ocean. Hence, these conditions result in a decrease (increase) in the water vapor content in the SRYR. Furthermore, the convergence (divergence) anomalies in the upper level and the divergence (convergence) anomalies in the lower level result in the descending (ascending) motion over the SRYR. These factors decrease (increase) the rainfall, thereby decreasing (increasing) the runoff in the SRYR during the flood season

    Spatial and Temporal Soil Moisture Variations over China from Simulations and Observations

    No full text
    The Community Land Model version 4.0 (CLM4.0) driven by the forcing data of Princeton University was used to simulate soil moisture (SM) from 1961 to 2010 over China. The simulated SM was compared to the in situ SM measurements from International Soil Moisture Network over China, National Centers for Environmental Prediction (NCEP) Reanalysis data, a new microwave based multiple-satellite surface SM dataset (SM-MW), and European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA Interim/Land) SM data. The results showed that CLM4.0 simulation is capable of capturing characteristics of the spatial and temporal variations of SM. The simulated, NCEP, SM-MW, and ERA Interim/Land SM products are reasonably consistent with each other; based on the simulated SM of summer, it can be concluded that the spatial distribution in every layer was characterized by a gradually increasing pattern from the northwest to southeast. The SM increased from surface layer to deeper layer in general. The variation trends basically showed consistencies at all depths. The simulated SM of summer demonstrated different responses to the precipitation variation. The variation distribution of SM and measured precipitation had consistencies. The humid region significantly responded to precipitation, while the semiarid and arid regions were ranked second
    corecore