4 research outputs found

    Malaysia Airlines flight MH370 search data reveal geomorphology and seafloor processes in the remote southeast Indian Ocean

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Geology 395 (2018): 301-319, doi:10.1016/j.margeo.2017.10.014.A high-resolution multibeam echosounder (MBES) dataset covering over 279,000 km2 was acquired in the southeastern Indian Ocean to assist the search for Malaysia Airlines Flight 370 (MH370) that disappeared on 8 March 2014. The data provided an essential geospatial framework for the search and is the first large-scale coverage of MBES data in this region. Here we report on geomorphic analyses of the new MBES data, including a comparison with the Global Seafloor Geomorphic Features Map (GSFM) that is based on coarser resolution satellite altimetry data, and the insights the new data provide into geological processes that have formed and are currently shaping this remote deepsea area. Our comparison between the new MBES bathymetric model and the latest global topographic/bathymetric model (SRTM15_plus) reveals that 62% of the satellite-derived data points for the study area are comparable with MBES measurements within the estimated vertical uncertainty of the SRTM15_plus model (± 100 m). However, > 38% of the SRTM15_plus depth estimates disagree with the MBES data by > 100 m, in places by up to 1900 m. The new MBES data show that abyssal plains and basins in the study area are significantly more rugged than their representation in the GSFM, with a 20% increase in the extent of hills and mountains. The new model also reveals four times more seamounts than presented in the GSFM, suggesting more of these features than previously estimated for the broader region. This is important considering the ecological significance of high-relief structures on the seabed, such as hosting high levels of biodiversity. Analyses of the new data also enabled sea knolls, fans, valleys, canyons, troughs, and holes to be identified, doubling the number of discrete features mapped. Importantly, mapping the study area using MBES data improves our understanding of the geological evolution of the region and reveals a range of modern sedimentary processes. For example, a large series of ridges extending over approximately 20% of the mapped area, in places capped by sea knolls, highlight the preserved seafloor spreading fabric and provide valuable insights into Southeast Indian Ridge seafloor spreading processes, especially volcanism. Rifting is also recorded along the Broken Ridge – Diamantina Escarpment, with rift blocks and well-bedded sedimentary bedrock outcrops discernible down to 2400 m water depth. Modern ocean floor sedimentary processes are documented by sediment mass transport features, especially along the northern margin of Broken Ridge, and in pockmarks (the finest-scale features mapped), which are numerous south of Diamantina Trench and appear to record gas and/or fluid discharge from underlying marine sediments. The new MBES data highlight the complexity of the search area and serve to demonstrate how little we know about the vast areas of the ocean that have not been mapped with MBES. The availability of high-resolution and accurate maps of the ocean floor can clearly provide new insights into the Earth's geological evolution, modern ocean floor processes, and the location of sites that are likely to have relatively high biodiversity

    Bedload sediment transport dynamics in a macrotidal embayment, and implications for export to the southern Great Barrier Reef shelf

    No full text
    Keppel Bay is a macrotidal ernbayment on a tectonically stable, tropical coast, which links the Fitzroy River with the Great Barrier Reef continental shelf Estuaries and deltas act as conduits between catchments and inner shelf environments. Therefore, understanding sediment transport pathways in these complex systems is essential for the management of ecosystems such as coral-reefs that are potentially vulnerable to enhanced river sediment loads. Furthermore, the morphology and sediment dynamics of subtidal sand ridges and dunes are relatively poorly characterised in macrotidal estuaries, particularly in turbid, episodic systems such as the Fitzroy River and Keppel Bay. Our sedimentological analysis of seabed samples, shear-stress modelling and three-dimensional acoustic imaging reveals that Keppel Bay is a mixed wave- and tide-dominated estuarine system. Areas of sediment starvation and shoreward transport characterise the offshore zone, whereas a complex of both active and relict tidal sand ridges, and associated subaqueous dunes, dominate the relatively protected southern Keppel Bay. Transport within this region is highly dynamic and variable, with ebb-dominated sediment transport through tidal channels into the outer bay where there is a switch to wave-dominated shoreward transport. Ultimately, bedload sediments appear to be reworked back inshore and to the north, and are gradually infilling the bedrock-defined embayment. Our characterisation of the Keppel Bay system provides a detailed example of the physiography of the seaward portion of a tide-dominated system, and shows that sediment transport in these areas is influenced by a variable hydrodynamic regime as well as relict channels and bedrock topography. (c) 2007 Elsevier B.V. All rights reserved

    Outcropping reef ledges drive patterns of epibenthic assemblage diversity on cross-shelf habitats

    No full text
    Seafloor habitats on continental shelf margins are increasingly being the subject of worldwide conservation efforts to protect them from human activities due to their biological and economic value. Quantitative data on the epibenthic taxa which contributes to the biodiversity value of these continental shelf margins is vital for the effectiveness of these efforts, especially at the spatial resolution required to effectively manage these ecosystems. We quantified the diversity of morphotype classes on an outcropping reef system characteristic of the continental shelf margin in the Flinders Commonwealth Marine Reserve, southeastern Australia. The system is uniquely characterized by long linear outcropping ledge features in sedimentary bedrock that differ markedly from the surrounding low-profile, sand-inundated reefs. We characterize a reef system harboring rich morphotype classes, with a total of 55 morphotype classes identified from the still images captured by an autonomous underwater vehicle. The morphotype class Cnidaria/Bryzoa/Hydroid matrix dominated the assemblages recorded. Both a and ß diversity declined sharply with distance from nearest outcropping reef ledge feature. Patterns of the morphotype classes were characterized by (1) morphotype turnover at scales of 5 to 10s m from nearest outcropping reef ledge feature, (2) 30 % of morphotype classes were recorded only once (i.e. singletons), and (3) generally low levels of abundance (proportion cover) of the component morphotype class. This suggests that the assemblages in this region contain a considerable number of locally rare morphotype classes. This study highlights the particular importance of outcropping reef ledge features in this region, as they provide a refuge against sediment scouring and inundation common on the low profile reef that characterizes this region. As outcropping reef features, they represent a small fraction of overall reef habitat yet contain much of the epibenthic faunal diversity. This study has relevance to conservation planning for continental shelf habitats, as protecting a single, or few, areas of reef is unlikely to accurately represent the geomorphic diversity of cross-shelf habitats and the morphotype diversity that is associated with these features. Equally, when designing monitoring programs these spatially-discrete, but biologically rich outcropping reef ledge features should be considered as distinct components in stratified sampling designs
    corecore