4 research outputs found

    HET acid based oligoesters – TGA/FTIR studies

    Get PDF
    One of the important reactive halogenated dicarboxylic acids used in the synthesis of flame retardant unsaturated polyester resins is 1,4,5,6,7,7-hexachlorobicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid (HET acid). In the present investigation four different oligoesters are synthesized using HET acid as the diacid component and 1,2-ethane diol, 1,2-propane diol, 1,3-propane diol and 1,4-butane diol as the aliphatic diols. Melt condensation technique in vacuum is used for the synthesis of the oligoesters. The number average molecular weights of the oligoesters are determined using end group analysis. The degree of polymerization is estimated to be 3–5. The structural characterization is done using FTIR and NMR (1H and 13C) techniques. In the present investigation, TGA-FTIR studies for the different oligoesters are carried out in nitrogen atmosphere. The materials are heated from ambient to 600 °C at a heating rate of 20 °C/min. The main volatile products identified are CO, HCl, H2O, CO2, hexachlorocyclopentadiene and HET acid/anhydride. The evolution profile of these materials with respect to the structure of the oligoesters is discussed in detail and presented. The importance of β-hydrogens in the diol component and the plausible mechanism for the flame retardant behavior of these oligoesters are presented

    Thermal Degradation Studies on PMMA–HET Acid Based Oligoesters Blends

    Get PDF
    Imparting thermal stability to polymethyl methacrylate (PMMA) without affecting its optical clarity is attempted by incorporating HET acid based oligoesters. Pure PMMA and PMMA containing five and 20 wt% of four different oligoesters are separately prepared using bulk polymerization. The thermal properties of the materials studied using DSC, TG, TG–FTIR and Pyr–GC–MS are presented. The main volatile degradation products identified are CO, HCl, CO2, H2O, hexachlorocyclopentadiene, hexachloroendomethylene tetrahydrophthalic acid/anhydride and methyl methacrylate. A detailed mechanism for the influence of the degradation products of HET acid based oligoesters on the thermal degradation of PMMA is also presented
    corecore