46 research outputs found

    Parametric study of temperature distribution in plasmon-assisted photocatalysis

    Full text link
    Recently, there has been a growing interest in the usage of mm-scale composites of plasmonic nanoparticles for enhancing the rates of chemical reactions; the effect was shown recently to be predominantly associated with the elevated temperature caused by illumination. Here, we study the parametric dependence of the temperature distribution in these samples, and provide analytic expressions for simple cases. We show that since these systems are usually designed to absorb all the incoming light, the temperature distribution in them is weakly-dependent on the illumination spectrum, pulse duration, particle shape, size and density. Thus, changes in these parameters yield at most modest quantitative changes. We also show that the temperature distribution is linearly dependent on the beam radius and the thermal conductivity of the host. Finally, we study the sensitivity of the reaction rate to these parameters as a function of the activation energy and interpret various previous experimental reports. These results would simplify the optimization of photocatalysis experiments, as well as for other energy-related applications based on light harvesting for heat generation

    Theory of Non-equilibrium "Hot" Carriers in Direct Band-gap Semiconductors Under Continuous Illumination

    Full text link
    The interplay between the illuminated excitation of carriers and subsequent thermalization and recombination leads to the formation of non-equilibrium distributions for the "hot" carriers and to heating of both electrons, holes and phonons. In spite of the fundamental and practical importance of these processes, there is no theoretical framework which encompasses all of them and provides a clear prediction for the non-equilibrium carrier distributions. Here, a self-consistent theory accounting for the interplay between excitation, thermalization, and recombination in continuously-illuminated semiconductors is presented, enabling the calculation of non-equilibrium carrier distributions. We show that counter-intuitively, distributions deviate more from equilibrium under weak illumination than at high intensities. We mimic two experimental procedures to extract the carrier temperatures and show that they yield different dependence on illumination. Finally, we provide an accurate way to evaluate photoluminescence efficiency, which, unlike conventional models, predicts correctly the experimental results. These results provide a starting point towards examining how non-equilibrium features will affect properties hot-carrier based application.Comment: Version accepted in New Journal of Physic
    corecore