3 research outputs found

    Plant-derived isoquinoline alkaloids that target ergosterol biosynthesis discovered by using a novel antifungal screening tool

    No full text
    The ergosterol pathway is a prime antifungal target as it is required for fungal survival, yet is not involved in human homeostasis. Methods to study the ergosterol pathway, however, are often time-consuming. The minimum inhibitory concentration (MIC) assay is a simple research tool that determines the lowest concentration at which a novel antimicrobial is active in vitro with limited scope to determine the mechanism of action for a drug. In this study, we show that by adding hydrogen peroxide, an oxidative stressor, or glutathione (GSH), an antioxidant, to modify a commonly performed MIC assay allowed us to screen selectively for new antifungal drugs that target ergosterol biosynthesis in fungi. A human pathogen and dermatophyte, Microsporum gypseum, was used as a test organism. When exposed to ergosterol targeting drugs, the hydrogen peroxide treatment significantly decreased fungal survival by reducing ergosterol in the cell wall, whereas GSH increased survival of M. gypseum. Further, by performing a series of experiments with M. gypseum and Trichophyton rubrum, it was determined that the oxidative stress from hydrogen peroxide causes cell death at different developmental stages based on fungal species. These findings allow us to describe a simple, high-throughput method for simultaneously screening new antifungal drugs for activity and effects on the ergosterol pathway. By using this tool, two isoquinoline alkaloids were discovered to be potent inhibitors of ergosterol biosynthesis in vitro by reducing the amount of ergosterol without affecting the expression of 1,3-β-glucan. Both compounds also significantly reduced the severity of acanthosis, hyperkeratosis, spongiosis and dermal edema in vivo

    Sequential Regulation of Maternal mRNAs through a Conserved cis-Acting Element in Their 3′ UTRs

    Get PDF
    Summary: Maternal mRNAs synthesized during oogenesis initiate the development of future generations. Some maternal mRNAs are either somatic or germline determinants and must be translationally repressed until embryogenesis. However, the translational repressors themselves are temporally regulated. We used polar granule component (pgc), a Drosophila maternal mRNA, to ask how maternal transcripts are repressed while the regulatory landscape is shifting. pgc, a germline determinant, is translationally regulated throughout oogenesis. We find that different conserved RNA-binding proteins bind a 10-nt sequence in the 3′ UTR of pgc mRNA to continuously repress translation at different stages of oogenesis. Pumilio binds to this sequence in undifferentiated and early-differentiating oocytes to block Pgc translation. After differentiation, Bruno levels increase, allowing Bruno to bind the same sequence and take over translational repression of pgc mRNA. We have identified a class of maternal mRNAs that are regulated similarly, including zelda, the activator of the zygotic genome. : Flora et al. show that pgc, a germline determinant, is translationally regulated throughout oogenesis. Different conserved RBPs bind a 10-nt sequence in the 3′ UTR to continuously repress translation throughout oogenesis. This mode of regulation applies to a class of maternal mRNAs, including zelda, the activator of the zygotic genome. Keywords: pgc, RNA regulation, Pumilio, Bruno, oogenesi

    Tunable Transcriptional Interference at the Endogenous Alcohol Dehydrogenase Gene Locus in Drosophila melanogaster

    No full text
    Neighboring sequences of a gene can influence its expression. In the phenomenon known as transcriptional interference, transcription at one region in the genome can repress transcription at a nearby region in cis. Transcriptional interference occurs at a number of eukaryotic loci, including the alcohol dehydrogenase (Adh) gene in Drosophila melanogaster. Adh is regulated by two promoters, which are distinct in their developmental timing of activation. It has been shown using transgene insertion that when the promoter distal from the Adh start codon is deleted, transcription from the proximal promoter becomes de-regulated. As a result, the Adh proximal promoter, which is normally active only during the early larval stages, becomes abnormally activated in adults. Whether this type of regulation occurs in the endogenous Adh context, however, remains unclear. Here, we employed the CRISPR/Cas9 system to edit the endogenous Adh locus and found that removal of the distal promoter also resulted in the untimely expression of the proximal promoter-driven mRNA isoform in adults, albeit at lower levels than previously reported. Importantly, transcription from the distal promoter was sufficient to repress proximal transcription in larvae, and the degree of this repression was dependent on the degree of distal promoter activity. Finally, upregulation of the distal Adh transcript led to the enrichment of histone 3 lysine 36 trimethylation over the Adh proximal promoter. We conclude that the endogenous Adh locus is developmentally regulated by transcriptional interference in a tunable manner
    corecore