98 research outputs found

    Potential Pitfalls in Pre-implantation Genetic Diagnosis in a Patient with Tuberous Sclerosis and Isolated Mosaicism for a TSC2 Variant in Renal Tissue

    Get PDF
    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that displays a wide spectrum of clinical manifestations, often affecting multiple organs including the kidneys, brain, lungs, and skin. A pathogenic mutation in either the TSC1 or TSC2 gene can be detected in almost 85% of the cases, with mosaicism accounting for about half of the remaining cases. We report a case of TSC diagnosed clinically, requesting genetic counselling regarding reproductive risks. No mutation was identified on initial testing of peripheral blood; however, mosaicism for a likely pathogenic frameshift variant in TSC2 was detected at a level of 15% in renal angiomyolipoma tissue. Despite widespread clinical manifestations of TCS, this variant was not detected in skin fibroblasts or saliva, raising the possibility this is an isolated somatic mutation in renal tissue with the underlying germline mutation not yet identified. This case highlights the difficulties when counselling patients with mosaicism regarding their reproductive risks and prenatal diagnostic options

    Transcriptional Profiling of Endocrine Cerebro-Osteodysplasia Using Microarray and Next-Generation Sequencing

    Get PDF
    BACKGROUND: Transcriptome profiling of patterns of RNA expression is a powerful approach to identify networks of genes that play a role in disease. To date, most mRNA profiling of tissues has been accomplished using microarrays, but next-generation sequencing can offer a richer and more comprehensive picture. METHODOLOGY/PRINCIPAL FINDINGS: ECO is a rare multi-system developmental disorder caused by a homozygous mutation in ICK encoding intestinal cell kinase. We performed gene expression profiling using both cDNA microarrays and next-generation mRNA sequencing (mRNA-seq) of skin fibroblasts from ECO-affected subjects. We then validated a subset of differentially expressed transcripts identified by each method using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Finally, we used gene ontology (GO) to identify critical pathways and processes that were abnormal according to each technical platform. Methodologically, mRNA-seq identifies a much larger number of differentially expressed genes with much better correlation to qRT-PCR results than the microarray (r² = 0.794 and 0.137, respectively). Biologically, cDNA microarray identified functional pathways focused on anatomical structure and development, while the mRNA-seq platform identified a higher proportion of genes involved in cell division and DNA replication pathways. CONCLUSIONS/SIGNIFICANCE: Transcriptome profiling with mRNA-seq had greater sensitivity, range and accuracy than the microarray. The two platforms generated different but complementary hypotheses for further evaluation

    A mutation in the serine protease TMPRSS4 in a novel pediatric neurodegenerative disorder

    Get PDF
    Background: To elucidate the genetic basis of a novel neurodegenerative disorder in an Old Order Amish pedigree by combining homozygosity mapping with exome sequencing. Methods and results. We identified four individuals with an autosomal recessive condition affecting the central nervous system (CNS). Neuroimaging studies identified progressive global CNS tissue loss presenting early in life, associated with microcephaly, seizures, and psychomotor retardation; based on this, we named the condition Autosomal Recessive Cerebral Atrophy (ARCA). Using two unbiased genetic approaches, homozygosity mapping and exome sequencing, we narrowed the candidate region to chromosome 11q and identified the c.995C \u3e T (p.Thr332Met) mutation in the TMPRSS4 gene. Sanger sequencing of additional relatives confirmed that the c.995C \u3e T genotype segregates with the ARCA phenotype. Residue Thr332 is conserved across species and among various ethnic groups. The mutation is predicted to be deleterious, most likely due to a protein structure alteration as demonstrated with protein modelling. Conclusions: This novel disease is the first to demonstrate a neurological role for a transmembrane serine proteases family member. This study demonstrates a proof-of-concept whereby combining exome sequencing with homozygosity mapping can find the genetic cause of a rare disease and acquire better understanding of a poorly described protein in human development. © 2013 Lahiry et al.; licensee BioMed Central Ltd

    A mutation in the serine protease TMPRSS4 in a novel pediatric neurodegenerative disorder

    Get PDF
    Background: To elucidate the genetic basis of a novel neurodegenerative disorder in an Old Order Amish pedigree by combining homozygosity mapping with exome sequencing. Methods and results. We identified four individuals with an autosomal recessive condition affecting the central nervous system (CNS). Neuroimaging studies identified progressive global CNS tissue loss presenting early in life, associated with microcephaly, seizures, and psychomotor retardation; based on this, we named the condition Autosomal Recessive Cerebral Atrophy (ARCA). Using two unbiased genetic approaches, homozygosity mapping and exome sequencing, we narrowed the candidate region to chromosome 11q and identified the c.995C \u3e T (p.Thr332Met) mutation in the TMPRSS4 gene. Sanger sequencing of additional relatives confirmed that the c.995C \u3e T genotype segregates with the ARCA phenotype. Residue Thr332 is conserved across species and among various ethnic groups. The mutation is predicted to be deleterious, most likely due to a protein structure alteration as demonstrated with protein modelling. Conclusions: This novel disease is the first to demonstrate a neurological role for a transmembrane serine proteases family member. This study demonstrates a proof-of-concept whereby combining exome sequencing with homozygosity mapping can find the genetic cause of a rare disease and acquire better understanding of a poorly described protein in human development. © 2013 Lahiry et al.; licensee BioMed Central Ltd

    Exome sequencing identifies nfs1 deficiency in a novel fe-s cluster disease, infantile mitochondrial complex ii/iii deficiency

    Get PDF
    Iron-sulfur (Fe-S) clusters are a class of highly conserved and ubiquitous prosthetic groups with unique chemical properties that allow the proteins that contain them, Fe-S proteins, to assist in various key biochemical pathways. Mutations in Fe-S proteins often disrupt Fe-S cluster assembly leading to a spectrum of severe disorders such as Friedreich’s ataxia or iron-sulfur cluster assembly enzyme (ISCU) myopathy. Herein, we describe infantile mitochondrial complex II/III deficiency, a novel autosomal recessive mitochondrial disease characterized by lactic acidemia, hypotonia, respiratory chain complex II and III deficiency, multisystem organ failure and abnormal mitochondria. Through autozygosity mapping, exome sequencing, in silico analyses, population studies and functional tests, we identified c.215G\u3eA, p.Arg72Gln in NFS1 as the likely causative mutation. We describe the first disease in man likely caused by deficiency in NFS1, a cysteine desulfurase that is implicated in respiratory chain function and iron maintenance by initiating Fe-S cluster biosynthesis. Our results further demonstrate the importance of sufficient NFS1 expression in human physiology

    Inhibition of cytochrome P450 2D6 metabolism of hydrocodone to hydromorphone does not importantly affect abuse liability

    Get PDF
    ABSTRACT Enzymatic conversion of hydrocodone to hydromorphone is catalyzed by cytochrome P450 2D6, which is inactive in about 7% of Caucasians [poor metabolizers (PMs)] and can be inhibited by quinidine pretreatment in the remainder [extensive metabolizers (EMs)]. If hydromorphone, having a substantially higher -receptor affinity than hydrocodone, contributes importantly to the physiological and subjective effects of oral hydrocodone, then PMs should be less responsive to the same doses, and quinidine pretreatment should cause EMs to temporarily respond as PMs. Seventeen EMs and 8 PMs who previously responded positively to hydromorphone s.c. received placebo and hydrocodone (10 mg, 15 mg and 22.5 mg p.o.) and were retested with their favorite dose after placebo or quinidine (100 mg) pretreatment; physiological and subjective measures were collected at base line and four times after drug administration, and urine was collected for 8 hr. EMs and PMs were equally responsive to oral hydrocodone, and quinidine had no consistent effect on their responses, even though quinidine abolished the pre-existing metabolic differences in hydromorphone production, as measured in urine. These data suggest only a small role of hydromorphone in eliciting abuserelated responses to oral hydrocodone. The genetic polymorphism of the drug-metabolizing enzyme CYP2D6 results in phenotypic differences in the pharmacokinetics of many drugs One drug for which there is evidence of phenotypic differences in response is codeine, which is O-demethylated by CYP2D6 to form morphine Hydrocodone differs structurally from codeine in that the C6-position is occupied by a keto-group, and thus the drug does not undergo the extensive conjugation (Ͼ60%) that codeine undergoe

    Linkage analysis and exome sequencing identify a novel mutation in KCTD7 in patients with progressive myoclonus epilepsy with ataxia

    Get PDF
    Epilepsy affects approximately 1% of the world\u27s population. Genetic factors and acquired etiologies, as well as a range of environmental triggers, together contribute to epileptogenesis.Wehave identified a family with three daughters affected with progressive myoclonus epilepsy with ataxia. Clinical details of the onset and progression of the neurologic presentation, epileptic seizures, and the natural history of progression over a 10-year period are described. Using autozygosity genetic mapping, we identified a high likelihood homozygous region on chromosome 7p12.1-7q11.22. We subsequently applied whole-exome sequencing and employed a rare variant prioritization analysis within the homozygous region. We identified p.Tyr276Cys in the potassium channel tetramerization domain-containing seven gene, KCTD7, which is expressed predominantly in the brain. Mutations in this gene have been implicated previously in epileptic phenotypes due to disturbances in potassium channel conductance. Pathogenicity of the mutation was supported by bioinformatic predictive analyses and variant cosegregation within the family. Further biologic validation is necessary to fully characterize the pathogenic mechanisms that explain the phenotypic causes of epilepsy with ataxia in these patients

    Identification of a Novel Synaptic Protein, TMTC3, Involved in Periventricular Nodular Heterotopia with Intellectual Disability and Epilepsy

    Get PDF
    Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p. Leu729ThrfsTer6) in TMTC3, encoding transmembrane and tetratricopeptide repeat containing 3, in four siblings with nocturnal seizures and ID. Three of the four siblings have periventricular nodular heterotopia (PVNH), a common brain malformation caused by failure of neurons to migrate from the ventricular zone to the cortex. Expression analysis using patient-derived cells confirmed reduced TMTC3 transcript levels and loss of the TMTC3 protein compared to parental and control cells. As TMTC3 function is currently unexplored in the brain, we gathered support for a neurobiological role for TMTC3 by generating flies with post-mitotic neuron-specific knockdown of the highly conserved Drosophila melanogaster TMTC3 ortholog, CG4050/tmtc3. Neuron-specific knockdown of tmtc3 in flies resulted in increased susceptibility to induced seizures. Importantly, this phenotype was rescued by neuron-specific expression of human TMTC3, suggesting a role for TMTC3 in seizure biology. In addition, we observed co-localization of TMTC3 in the rat brain with vesicular GABA transporter (VGAT), a presynaptic marker for inhibitory synapses. TMTC3 is localized at VGAT positive pre-synaptic terminals and boutons in the rat hypothalamus and piriform cortex, suggesting a role for TMTC3 in the regulation of GABAergic inhibitory synapses. TMTC3 did not co-localize with Vglut2, a presynaptic marker for excitatory neurons. Our data identified TMTC3 as a synaptic protein that is involved in PVNH with ID and epilepsy, in addition to its previously described association with cobblestone lissencephaly

    Exome Sequencing as a Diagnostic Tool for Pediatric-Onset Ataxia

    Get PDF
    Ataxia demonstrates substantial phenotypic and genetic heterogeneity. We set out to determine the diagnostic yield of exome sequencing in pediatric patients with ataxia without a molecular diagnosis after standard-of-care assessment in Canada. FORGE (Finding Of Rare disease GEnes) Canada is a nation-wide project focused on identifying novel disease genes for rare pediatric diseases using whole-exome sequencing. We retrospectively selected all FORGE Canada projects that included cerebellar ataxia as a feature. We identified 28 such families and a molecular diagnosis was made in 13; a success rate of 46%. In 11 families, we identified mutations in genes associated with known neurological syndromes and in two we identified novel disease genes. Exome analysis of sib pairs and/or patients born to consanguineous parents was more likely to be successful (9/13) than simplex cases (4/15). Our data suggest that exome sequencing is an effective first line test for pediatric patients with ataxia where a specific single gene is not immediately suspected to be causative. © 2013 The Authors. *Human Mutation published by Wiley Periodicals, Inc
    corecore