159 research outputs found

    Transient hyponatremia of prematurity caused by mild Bartter syndrome type II: a case report.

    Get PDF
    BACKGROUND: Bartter syndrome subtypes are a group of rare renal tubular diseases characterized by impaired salt reabsorption in the tubule, specifically the thick ascending limb of Henle\u27s loop. Clinically, they are characterized by the association of hypokalemic metabolic alkalosis, hypercalciuria, nephrocalcinosis, increased levels of plasma renin and aldosterone, low blood pressure and vascular resistance to angiotensin II. Bartter syndrome type II is caused by mutations in the renal outer medullary potassium channel (ROMK) gene (KCNJ1), can present in the newborn period and typically requires lifelong therapy. CASE PRESENTATION: We describe a case of a prematurely born female infant presenting with antenatal polyhydramnios, and postnatal dehydration and hyponatremia. After 7 weeks of sodium supplementation, the patient demonstrated complete resolution of her hyponatremia and developed only transient metabolic alkalosis at 2 months of age but continues to be polyuric and exhibits hypercalciuria, without development of nephrocalcinosis. She was found to have two pathogenic variants in the KCNJ1 gene: a frameshift deletion, p.Glu334Glyfs*35 and a missense variant, p. Pro110Leu. While many features of classic ROMK mutations have resolved, the child does have Bartter syndrome type II and needs prolonged pediatric nephrology follow-up. CONCLUSION: Transient neonatal hyponatremia warrants a multi-system workup and genetic variants of KCNJ1 should be considered

    Potential Pitfalls in Pre-implantation Genetic Diagnosis in a Patient with Tuberous Sclerosis and Isolated Mosaicism for a TSC2 Variant in Renal Tissue

    Get PDF
    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that displays a wide spectrum of clinical manifestations, often affecting multiple organs including the kidneys, brain, lungs, and skin. A pathogenic mutation in either the TSC1 or TSC2 gene can be detected in almost 85% of the cases, with mosaicism accounting for about half of the remaining cases. We report a case of TSC diagnosed clinically, requesting genetic counselling regarding reproductive risks. No mutation was identified on initial testing of peripheral blood; however, mosaicism for a likely pathogenic frameshift variant in TSC2 was detected at a level of 15% in renal angiomyolipoma tissue. Despite widespread clinical manifestations of TCS, this variant was not detected in skin fibroblasts or saliva, raising the possibility this is an isolated somatic mutation in renal tissue with the underlying germline mutation not yet identified. This case highlights the difficulties when counselling patients with mosaicism regarding their reproductive risks and prenatal diagnostic options

    Transcriptional Profiling of Endocrine Cerebro-Osteodysplasia Using Microarray and Next-Generation Sequencing

    Get PDF
    BACKGROUND: Transcriptome profiling of patterns of RNA expression is a powerful approach to identify networks of genes that play a role in disease. To date, most mRNA profiling of tissues has been accomplished using microarrays, but next-generation sequencing can offer a richer and more comprehensive picture. METHODOLOGY/PRINCIPAL FINDINGS: ECO is a rare multi-system developmental disorder caused by a homozygous mutation in ICK encoding intestinal cell kinase. We performed gene expression profiling using both cDNA microarrays and next-generation mRNA sequencing (mRNA-seq) of skin fibroblasts from ECO-affected subjects. We then validated a subset of differentially expressed transcripts identified by each method using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Finally, we used gene ontology (GO) to identify critical pathways and processes that were abnormal according to each technical platform. Methodologically, mRNA-seq identifies a much larger number of differentially expressed genes with much better correlation to qRT-PCR results than the microarray (r² = 0.794 and 0.137, respectively). Biologically, cDNA microarray identified functional pathways focused on anatomical structure and development, while the mRNA-seq platform identified a higher proportion of genes involved in cell division and DNA replication pathways. CONCLUSIONS/SIGNIFICANCE: Transcriptome profiling with mRNA-seq had greater sensitivity, range and accuracy than the microarray. The two platforms generated different but complementary hypotheses for further evaluation

    A mutation in the serine protease TMPRSS4 in a novel pediatric neurodegenerative disorder

    Get PDF
    Background: To elucidate the genetic basis of a novel neurodegenerative disorder in an Old Order Amish pedigree by combining homozygosity mapping with exome sequencing. Methods and results. We identified four individuals with an autosomal recessive condition affecting the central nervous system (CNS). Neuroimaging studies identified progressive global CNS tissue loss presenting early in life, associated with microcephaly, seizures, and psychomotor retardation; based on this, we named the condition Autosomal Recessive Cerebral Atrophy (ARCA). Using two unbiased genetic approaches, homozygosity mapping and exome sequencing, we narrowed the candidate region to chromosome 11q and identified the c.995C \u3e T (p.Thr332Met) mutation in the TMPRSS4 gene. Sanger sequencing of additional relatives confirmed that the c.995C \u3e T genotype segregates with the ARCA phenotype. Residue Thr332 is conserved across species and among various ethnic groups. The mutation is predicted to be deleterious, most likely due to a protein structure alteration as demonstrated with protein modelling. Conclusions: This novel disease is the first to demonstrate a neurological role for a transmembrane serine proteases family member. This study demonstrates a proof-of-concept whereby combining exome sequencing with homozygosity mapping can find the genetic cause of a rare disease and acquire better understanding of a poorly described protein in human development. © 2013 Lahiry et al.; licensee BioMed Central Ltd

    A mutation in the serine protease TMPRSS4 in a novel pediatric neurodegenerative disorder

    Get PDF
    Background: To elucidate the genetic basis of a novel neurodegenerative disorder in an Old Order Amish pedigree by combining homozygosity mapping with exome sequencing. Methods and results. We identified four individuals with an autosomal recessive condition affecting the central nervous system (CNS). Neuroimaging studies identified progressive global CNS tissue loss presenting early in life, associated with microcephaly, seizures, and psychomotor retardation; based on this, we named the condition Autosomal Recessive Cerebral Atrophy (ARCA). Using two unbiased genetic approaches, homozygosity mapping and exome sequencing, we narrowed the candidate region to chromosome 11q and identified the c.995C \u3e T (p.Thr332Met) mutation in the TMPRSS4 gene. Sanger sequencing of additional relatives confirmed that the c.995C \u3e T genotype segregates with the ARCA phenotype. Residue Thr332 is conserved across species and among various ethnic groups. The mutation is predicted to be deleterious, most likely due to a protein structure alteration as demonstrated with protein modelling. Conclusions: This novel disease is the first to demonstrate a neurological role for a transmembrane serine proteases family member. This study demonstrates a proof-of-concept whereby combining exome sequencing with homozygosity mapping can find the genetic cause of a rare disease and acquire better understanding of a poorly described protein in human development. © 2013 Lahiry et al.; licensee BioMed Central Ltd

    Exome sequencing identifies nfs1 deficiency in a novel fe-s cluster disease, infantile mitochondrial complex ii/iii deficiency

    Get PDF
    Iron-sulfur (Fe-S) clusters are a class of highly conserved and ubiquitous prosthetic groups with unique chemical properties that allow the proteins that contain them, Fe-S proteins, to assist in various key biochemical pathways. Mutations in Fe-S proteins often disrupt Fe-S cluster assembly leading to a spectrum of severe disorders such as Friedreich’s ataxia or iron-sulfur cluster assembly enzyme (ISCU) myopathy. Herein, we describe infantile mitochondrial complex II/III deficiency, a novel autosomal recessive mitochondrial disease characterized by lactic acidemia, hypotonia, respiratory chain complex II and III deficiency, multisystem organ failure and abnormal mitochondria. Through autozygosity mapping, exome sequencing, in silico analyses, population studies and functional tests, we identified c.215G\u3eA, p.Arg72Gln in NFS1 as the likely causative mutation. We describe the first disease in man likely caused by deficiency in NFS1, a cysteine desulfurase that is implicated in respiratory chain function and iron maintenance by initiating Fe-S cluster biosynthesis. Our results further demonstrate the importance of sufficient NFS1 expression in human physiology

    Detection of a dna methylation signature for the intellectual developmental disorder, x-linked, syndromic, armfield type

    Get PDF
    A growing number of genetic neurodevelopmental disorders are known to be associated with unique genomic DNA methylation patterns, called episignatures, which are detectable in peripheral blood. The intellectual developmental disorder, X-linked, syndromic, Armfield type (MRXSA) is caused by missense variants in FAM50A. Functional studies revealed the pathogenesis to be a spliceosomopathy that is characterized by atypical mRNA processing during development. In this study, we assessed the peripheral blood specimens in a cohort of individuals with MRXSA and detected a unique and highly specific DNA methylation episignature associated with this disorder. We used this episignature to construct a support vector machine model capable of sensitive and specific identification of individuals with pathogenic variants in FAM50A. This study contributes to the expanding number of genetic neurodevelopmental disorders with defined DNA methylation episignatures, provides an additional understanding of the associated molecular mechanisms, and further enhances our ability to diagnose patients with rare disorders

    Use of human perivascular stem cells for bone regeneration

    Get PDF
    Human perivascular stem cells (PSCs) can be isolated in sufficient numbers from multiple tissues for purposes of skeletal tissue engineering(1-3). PSCs are a FACS-sorted population of 'pericytes' (CD146+CD34-CD45-) and 'adventitial cells' (CD146-CD34+CD45-), each of which we have previously reported to have properties of mesenchymal stem cells. PSCs, like MSCs, are able to undergo osteogenic differentiation, as well as secrete pro-osteogenic cytokines(1,2). In the present protocol, we demonstrate the osteogenicity of PSCs in several animal models including a muscle pouch implantation in SCID (severe combined immunodeficient) mice, a SCID mouse calvarial defect and a femoral segmental defect (FSD) in athymic rats. The thigh muscle pouch model is used to assess ectopic bone formation. Calvarial defects are centered on the parietal bone and are standardly 4 mm in diameter (critically sized)(8). FSDs are bicortical and are stabilized with a polyethylene bar and K-wires(4). The FSD described is also a critical size defect, which does not significantly heal on its own(4). In contrast, if stem cells or growth factors are added to the defect site, significant bone regeneration can be appreciated. The overall goal of PSC xenografting is to demonstrate the osteogenic capability of this cell type in both ectopic and orthotopic bone regeneration models
    corecore