13 research outputs found
Ausgangsbedingungen für die Vermarktung von Nachfrageflexibilität : Status-Quo-Analyse und Metastudie
Die vorliegende Arbeit ist Teil des durch das Bundesministerium für Bildung und Forschung geförderten Forschungsprojektes Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung (SynErgie). Ziel des Forschungsprojektes ist die Befähigung der energieintensiven Industrien in Deutschland, die Stromnachfrage dem zunehmend fluktuierenden Stromangebot anzupassen. In der Vergangenheit waren Stromsysteme in der Regel dahingehend ausgelegt, dass die Erzeugungsseite des Marktes an das zeitliche Verhalten des Verbrauchs angepasst war. Durch den verstärkten Ausbau volatiler erneuerbarer Energien unterliegt die Stromerzeugung jedoch unkontrollierbaren, wetterabhängigen Schwankungen, weshalb eine Flexibilisierung des Gesamtsystems zunehmend an Bedeutung gewinnt. Die in SynErgie betrachteten Industrieprozesse stellen dabei eine Teilmenge potenzieller Flexibilisierungsoptionen dar und können zur Lastanpassung an schwankende Erzeugung sowie zur Bereitstellung von Systemdienstleistungen und Entlastung der Netze beitragen. In einem liberalisierten, wettbewerblichen Strommarkt sind im Hinblick auf die Erschließung der Potenziale der Nachfrageflexibilität die marktlichen und regulatorischen Rahmenbedingungen von hoher Relevanz. Diese Studie beschreibt daher zunächst die Grundlagen des Strommarktdesigns und des konstituierenden gesetzlichen Rahmens. Dabei wird stets der Bezug zur Anwendung auf Industrieprozesse genommen und potenzielle Hemmnisse der Partizipation flexibler Nachfrageprozesse aufgearbeitet. Die Analyse bildet den Ausgangspunkt für die folgenden Arbeitspakete im Cluster IV und dient der clusterübergreifenden Information über den Status Quo der Marktstrukturen und regulatorischen Rahmenbedingungen. Neben der systematischen Aufarbeitung des marktlichen Rahmens werden die wissenschaftliche Literatur sowie bereits publizierte Studien zum Thema Nachfrageflexibilität (Demand Side Management und Demand Response) in einer Metastudie analysiert und zusammengefasst
Electricity Market Design 2030-2050: Moving Towards Implementation
Climate change and ambitious emission-reduction targets call for an extensive decarbonization of electricity systems, with increasing levels of Renewable Energy Sources (RES) and demand flexibility to balance the variable and intermittent electricity supply. A successful energy transition will lead to an economically and ecologically sustainable future with an affordable, reliable, and carbon-neutral supply of electricity. In order to achieve these objectives, a consistent and enabling market design is required. The Kopernikus Project SynErgie investigates how demand flexibility of the German industry can be leveraged and how a future-proof electricity market design should be organized, with more than 80 project partners from academia, industry, governmental and non-governmental organizations, energy suppliers, and network operators. In our SynErgie Whitepaper Electricity Spot Market Design 2030-2050 [1], we argued for a transition towards Locational Marginal Prices (LMPs) (aka. nodal prices) in Germany in a single step as a core element of a sustainable German energy policy. We motivated a well-designed transition towards LMPs, discussed various challenges, and provided a new perspective on electricity market design in terms of technological opportunities, bid languages, and strategic implications. This second SynErgie Whitepaper Electricity Market Design 2030-2050: Moving Towards Implementation aims at further concretizing the future German market design and provides first guidelines for an implementation of LMPs in Germany. Numerical studies –while not being free of abstractions –give evidence that LMPs generate efficient locational price signals and contribute to manage the complex coordination challenge in (long-term) electricity markets, ultimately reducing price differences between nodes. Spot and derivatives markets require adjustments in order to enable an efficient dispatch and price discovery, while maintaining high liquidity and low transaction costs. Moreover, a successful LMP implementation requires an integration into European market coupling and appropriate interfaces for distribution grids as well as sector coupling. Strategic implications with regard to long-term investments need to be considered, along with mechanisms to support RES investments. As a facilitator for an LMP system, digital technologies should be considered jointly with the market design transition under an enabling regulatory framework. Additional policies can address distributional effects of an LMP system and further prevent market power abuse. Overall, we argue for a well-designed electricity spot market with LMPs, composed of various auctions at different time frames, delivering an efficient market clearing, considering grid constraints, co-optimizing ancillary services, and providing locational prices according to a carefully designed pricing scheme. The spot market is tightly integrated with liquid and accessible derivatives markets, embedded into European market coupling mechanisms, and allows for functional interfaces to distribution systems and other energy sectors. Long-term resource adequacy is ensured and existing RES policies transition properly to the new market design. Mechanisms to mitigate market power and distributional effects are in place and the market design leverages the potential of modern information technologies. Arapid expansion of wind andsolar capacity will be needed to decarbonize the integrated energy system but will most likely also increase the scarcity of the infrastructure. Therefore, an efficient use of the resource "grid" will be a key factor of a successful energy transition. The implementation of an LMPs system of prices with finer space and time granularity promises many upsides and can be a cornerstone for a futureproof electricity system, economic competitiveness, and a decarbonized economy and society. Among the upsides, demand response (and other market participants with opportunity costs) can be efficiently and coherently incentivized to address network constraints, a task zonal systems with redispatch fail at. The transition to LMPs requires a thorough consideration of all the details and specifications involved in the new market design. With this whitepaper, we provide relevant perspectives and first practical guidelines for this crucial milestone of the energy transition
Electricity Spot Market Design 2030-2050
Driven by the climate conference in Paris in December 2015 countries worldwide are confronted with the question of how to shape their power system and how to establish alternative technologies to reduce harmful CO2 emissions. The German government plans that even before the year 2050, all electricity generated and consumed in Germany should be greenhouse gas neutral [1]. To successfully integrate renewable energies, a future energy system must be able to handle the intermittent nature of renewable energy sources such as wind and solar.
One important means to address such electricity production variability is demand-side flexibility. Here, industry plays a major role in responding to variable electricity supply with adequate flexibility. This is where the Kopernikus project SynErgie comes in with more than 80 project partners from academia, industry, governmental, and non-governmental organizations as well as energy suppliers and network operators. The Kopernikus project SynErgie investigates how to best leverage demand-side flexibility in the German industry.
The current electricity market design in Germany is not well suited to deal with increasing levels of renewable energy, and it does not embrace demand-side flexibility. Almost 6GW of curtailed power in 2019 provide evidence that changes are needed with respect to the rules governing electricity markets. These rules were designed at a time when electricity generation was concentrated on a few large and dispatchable conventional power plants and demand was considered inelastic.
The SynErgie Cluster IV investigates how a future-proof electricity market design should be organized. The corresponding Work Package IV.3.1 more specifically deals with analyzing and designing allocation and pricing rules on electricity spot markets. The resulting design must be well suited to accommodate demand-side flexibility and address the intermittent nature of important renewable energy sources. This whitepaper is the result of a fruitful collaboration among the partners involved in SynErgie Cluster IV which include Germany’s leading research organizations and practitioners in the field. The collaboration led to an expert workshop in October 2020 with participation from a number of international energy market experts such as Mette Bjørndal (NHH), Endre Bjørndal (NHH), Peter Cramton (University of Maryland and University of Cologne), and Raphael Heffron (University of Dundee). The whitepaper details the key recommendations from this workshop.
In particular, the whitepaper recommends a move to a locational, marginal price-based system together with new bidding formats allowing to better express flexibility. We argue in favor of a one-step introduction of locational, marginal prices instead of repeatedly splitting existing zones. Frequent zone splitting involves recurring political debates as well as short- and long-run instabilities affecting the basis for financial contracts, for example. Importantly, the definition of stable prize zones is very challenging with increasing levels of distributed and renewable energy sources. The recommendation is the outcome of an intense debate about advantages and downsides of different policy alternatives. However, such a transition to locational, marginal prices is not without challenges, and it is a call to arms for the research community, policymakers, and practitioners to develop concepts on how to best facilitate the transition and ensure a reliable and efficient electricity market of the future
Network tariffs under different pricing schemes in a dynamically consistent framework
Adequately designed prices are essential to achieve efficient coordination between the electricity network and market participants. However, consumer prices comprise several, possibly distorting price components. In an analytical model, we examine different regulatory settings, consisting of alternative spot market pricing schemes and network tariff designs in a dynamic context. While a setting with zonal pricing and fixed network tariffs achieves the highest welfare, a deviation of either the pricing scheme or the network tariff design leads to inefficiencies. However, we show that two inefficiently designed price components can be better than one, especially if network tariffs correct for the static inefficiency of the pricing scheme. Besides the network tariff design, network operators must pay attention to the allocation of network costs. It affects spatial price signals and, therefore, the dynamic allocation of investment decisions. Considering these decisions in a dynamic framework increases the requirements for the configuration of network tariffs, especially with volume-based network tariffs
How prices guide investment decisions under net purchasing-An empirical analysis on the impact of network tariffs on residential PV
Within the regulation of net purchasing, investment incentives for residential PV depend on the remuneration for grid feed-in and the consumption costs that households can save by self-consumption. Network tariffs constitute a substantial part of these consumption costs. We use postcode-level data for Germany between 2009 and 2017 and exploit the regional heterogeneity of network tariffs to investigate whether they encourage to invest in PV installations and evaluate how the nonlinear tariff structure impacts residential PV adoption. Our results show that network tariffs do impact PV adoption. The effect has increased in recent years when self-consumption has become financially more attractive, and the results confirm the expectation that PV investments are driven by the volumetric tariff. Policy reforms that alter the share between the price components are, thus, likely to affect residential PV adoption. Further, with self-consumption becoming a key incentive, price signals can effectively support the coordination of electricity demand and supply in Germany
How prices guide investment decisions under net purchasing - An empirical analysis on the impact of network tariffs on residential PV
Within the regulation of net purchasing, investment incentives for residential PV depend on the remuneration for grid feed-in and the consumption costs that households can save by self-consumption. Network tariffs constitute a substantial part of these consumption costs. We use postcode-level data for Germany between 2009 and 2017 and exploit the regional heterogeneity of network tariffs to investigate whether they encourage to invest in PV installations and evaluate how the nonlinear tariff structure impacts residential PV adoption. Our results show that network tariffs do impact PV adoption. The effect has increased in recent years when self-consumption has become financially more attractive, and the results confirm the expectation that PV investments are driven by the volumetric tariff. Policy reforms that alter the share between the price components are, thus, likely to affect residential PV adoption. Further, with self-consumption becoming a key incentive, price signals can effectively support the coordination of electricity demand and supply in Germany
The place beyond the lines - Efficient storage allocation in a spatially unbalanced power system with a high share of renewables
Increasing shares of wind and solar generation serve to decarbonize electricity generation; however, their temporal and spatial variability poses challenges in grid operation. While grid expansion is restricted in the medium term, storage technologies can potentially increase the power systems' efficiency by temporally aligning generation and demand and increasing network utilization. This paper uses a theoretical and a numerical model to evaluate the optimal allocation of battery storage. In a case study for Germany, we find that batteries can reduce system costs when placed behind the north-south grid bottleneck and near solar power. The supply costs in a setting with uniform prices and a random battery distribution are 9.3% higher than in the theoretical first-best benchmark with nodal prices. An optimal allocation of batteries can reduce this efficiency gap by 0.7 percentage points to 8.6%. This corresponds to almost a doubling of the supply cost savings per euro spent on battery installation. Due to a lack of spatially differentiated investment incentives under the German uniform pricing scheme, batteries have to be allocated by additional policies. Simple allocation rules such as tying battery siting to solar capacity or explicitly identifying a limited number of suitable sites and auctioning capacity can approximate an optimal allocation
Initial conditions for the marketing of flexibility in demand: status quo analysis and meta-study
Die vorliegende Arbeit ist Teil des durch das Bundesministerium für Bildung und Forschung geförderten Forschungsprojektes Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung (SynErgie). Ziel des Forschungsprojektes ist die Befähigung der energieintensiven Industrien in Deutschland, die Stromnachfrage dem zunehmend fluktuierenden Stromangebot anzupassen. In der Vergangenheit waren Stromsysteme in der Regel dahingehend ausgelegt, dass die Erzeugungsseite des Marktes an das zeitliche Verhalten des Verbrauchs angepasst war. Durch den verstärkten Ausbau volatiler erneuerbarer Energien unterliegt die Stromerzeugung jedoch unkontrollierbaren, wetterabhängigen Schwankungen, weshalb eine Flexibilisierung des Gesamtsystems zunehmend an Bedeutung gewinnt. Die in SynErgie betrachteten Industrieprozesse stellen dabei eine Teilmenge potenzieller Flexibilisierungsoptionen dar und können zur Lastanpassung an schwankende Erzeugung sowie zur Bereitstellung von Systemdienstleistungen und Entlastung der Netze beitragen. In einem liberalisierten, wettbewerblichen Strommarkt sind im Hinblick auf die Erschließung der Potenziale der Nachfrageflexibilität die marktlichen und regulatorischen Rahmenbedingungen von hoher Relevanz. Diese Studie beschreibt daher zunächst die Grundlagen des Strommarktdesigns und des konstituierenden gesetzlichen Rahmens. Dabei wird stets der Bezug zur Anwendung auf Industrieprozesse genommen und potenzielle Hemmnisse der Partizipation flexibler Nachfrageprozesse aufgearbeitet. Die Analyse bildet den Ausgangspunkt für die folgenden Arbeitspakete im Cluster IV und dient der clusterübergreifenden Information über den Status Quo der Marktstrukturen und regulatorischen Rahmenbedingungen. Neben der systematischen Aufarbeitung des marktlichen Rahmens werden die wissenschaftliche Literatur sowie bereits publizierte Studien zum Thema Nachfrageflexibilität (Demand Side Management und Demand Response) in einer Metastudie analysiert und zusammengefasst
Ausgangsbedingungen für die Vermarktung von Nachfrageflexibilität: Status-Quo-Analyse und Metastudie. 2. Fassung
Die vorliegende Arbeit ist Teil des durch das Bundesministerium für Bildung und Forschung geförderten Forschungsprojektes „Synchronisierte und energieadaptive Produktionstechnik zur flexiblen Ausrichtung von Industrieprozessen auf eine fluktuierende Energieversorgung (SynErgie)“. Als eines der „Kopernikus-Projekte für die Energiewende“ hat das Forschungsprojekt SynErgie das Ziel, die energieintensiven Industrien in Deutschland dazu zu befähigen, ihre Stromnachfrage dem zunehmend fluktuierenden Stromangebot anzupassen. In der Vergangenheit waren Stromsysteme in der Regel dahingehend ausgelegt, dass die Erzeugungsseite des Marktes an das zeitliche Verhalten des Verbrauchs angepasst war. Durch den verstärkten Ausbau volatiler erneuerbarer Energien unterliegt die Stromerzeugung jedoch unkontrollierbaren, wetterabhängigen Schwankungen, weshalb eine Flexibilisierung des Gesamtsystems zunehmend an Bedeutung gewinnt. Weil die Erzeugerseite benötigte Flexibilitäten nur in Form einer Reduzierung der Einspeisung anbieten kann, ergibt sich eine sogenannte Flexibilitätslücke. Wie am 14. Dezember 2018 und am 10. Januar 2019 deutlich wurde, bringt diese Flexibilitätslücke das Stromsystem bereits heute an seine Grenzen der Stabilität. Nur durch den Einsatz vieler Ausgleichsmechanismen bzw. Flexibilisierungsoptionen konnte die Versorgungssicherheit an diesen Tagen gerade noch aufrechterhalten werden. Die in SynErgie betrachteten Industrieprozesse stellen dabei eine Teilmenge potenzieller Flexibilisierungsoptionen dar und können zur Lastanpassung an schwankende Erzeugung sowie zur Bereitstellung von Systemdienstleistungen und Entlastung der Netze beitragen. In einem liberalisierten, wettbewerblichen Strommarkt sind im Hinblick auf die Erschließung der Potenziale der Nachfrageflexibilität die marktlichen und regulatorischen Rahmenbedingungen von hoher Relevanz. Diese Studie beschreibt daher zunächst die Grundlagen des Strommarktdesigns und des konstituierenden gesetzlichen Rahmens. Auf aktuelle Diskussionen über das grundlegende Preissystem (Einheitspreissystem vs. zonales System vs. nodales System) wird dabei nicht eingegangen. Die Aufarbeitung dieser Diskussionen sowie die spezifische Analyse der Auswirkungen des Preissystems auf Nachfrageflexibilität ist Inhalt der in SynErgie II anstehenden Arbeitspakete des Clusters IV „Markt- und Stromsystem“. Die vorliegende Studie arbeitet deshalb vielmehr potenzielle Hemmnisse der Partizipation flexibler Nachfrageprozesse auf und nimmt dabei stets Bezug zur Anwendung auf Industrieprozesse. Die Analyse bildet die Grundlage für die zukünftige Arbeit im Cluster IV und dient der clusterübergreifenden Information über den Status Quo der Marktstrukturen und regulatorischen Rahmenbedingungen. Neben der systematischen Aufarbeitung des marktlichen Rahmens werden die wissenschaftliche Literatur sowie bereits publizierte Studien zum Thema Nachfrageflexibilität (Demand Side Management und Demand Response) in einer Metastudie analysiert und zusammengefasst