1,660 research outputs found

    Bubble Lift-off Size in Forced Convective Subcooled Boiling Flow

    Get PDF
    Forced convective subcooled boiling flow experiments were conducted in a BWR-scaled vertical upward annular channel. Water was used as the testing fluid, and the tests were performed at atmospheric pressure. A high-speed digital video camera was applied to capture the dynamics of the bubble nucleation process. Bubble lift-off diameters were obtained from the images for a total of 91 test conditions. A force balance analysis of a growing bubble was performed to predict the bubble lift-off size. The dimensionless form of the bubble lift-off diameter was formulated to be a function of Jacob number and Prandtl number. The proposed model agreed well with the experimental data within the averaged relative deviation of ±35.2 %

    A Remote Laser-mass Spectrometer for Determination of Elemental Composition

    Get PDF
    Determination of the elemental composition of lunar, asteroid, and planetary surfaces is a major concern for science and resource utilization of space. The science associated with the development of a satellite or lunar rover laser-mass spectrometer instrument is presented here. The instrument would include a pulsed laser with sufficient energy to create a plasma on a remote surface. Ions ejected from this plasma travel back to the spacecraft or rover, where they are analyzed by a time-of-flight mass spectrometer, giving the elemental and isotope composition. This concept is based on the LIMA-D instrument on board the former Soviet Union Phobos-88 spacecraft sent to Mars. A laser-mass spectrometer placed on a rover or satellite would substantially improve the data return over alternative techniques. The spatial resolution would be centimeters, and a complete mass spectrum could be achieved in one laser shot. An experiment is described that demonstrates these features. A 400 mj Nd:YAG laser is focused, to an intensity of 10(exp 11) w/sq cm, onto a Al, Ag, Cu, Ge, or lunar simulant target. A plasma forms from which ions are ejected. Some of these ions travel down an 18-m evacuated flight tube to a microchannel plate detector. Alternatively, the ions are captured by an ion trap where they are stored until pulsed into a 1-m time-of-flight mass spectrometer, giving the elemental composition of the remote surface. A television camera monitors the plasma plume shape, and a photodiode monitors the temporal plasma emission . With this system, ions of Al, Ag, Cu, Ge, and lunar simulant have been detected at 18 m. The mass spectrum from the ion trap and 1-m time-of-flight tube will be presented

    Bayesian models for the determination of resonant frequencies in a DI diesel engine

    Get PDF
    A time series method for the determination of combustion chamber resonant frequencies is outlined. This technique employs the use of Markov-chain Monte Carlo (MCMC) to infer parameters in a chosen model of the data. The development of the model is included and the resonant frequency is characterised as a function of time. Potential applications for cycle-by-cycle analysis are discussed and the bulk temperature of the gas and the trapped mass in the combustion chamber are evaluated as a function of time from resonant frequency information
    • …
    corecore