13 research outputs found

    Cancer Cell-Derived PDGFB Stimulates mTORC1 Activation in Renal Carcinoma

    Get PDF
    Clear cell renal cell carcinoma (ccRCC) is a hypervascular tumor that is characterized by bi-allelic inactivation of the VHL tumor suppressor gene and mTOR signalling pathway hyperactivation. The pro-angiogenic factor PDGFB, a transcriptional target of super enhancer-driven KLF6, can activate the mTORC1 signalling pathway in ccRCC. However, the detailed mechanisms of PDGFB-mediated mTORC1 activation in ccRCC have remained elusive. Here, we investigated whether ccRCC cells are able to secrete PDGFB into the extracellular milieu and stimulate mTORC1 signalling activity. We found that ccRCC cells secreted PDGFB extracellularly, and by utilizing KLF6- and PDGFB-engineered ccRCC cells, we showed that the level of PDGFB secretion was positively correlated with the expression of intracellular KLF6 and PDGFB. Moreover, the reintroduction of either KLF6 or PDGFB was able to sustain mTORC1 signalling activity in KLF6-targeted ccRCC cells. We further demonstrated that conditioned media of PDGFB-overexpressing ccRCC cells was able to re-activate mTORC1 activity in KLF6-targeted cells. In conclusion, cancer cell-derived PDGFB can mediate mTORC1 signalling pathway activation in ccRCC, further consolidating the link between the KLF6-PDGFB axis and the mTORC1 signalling pathway activity in ccRCC

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Cancer Cell-Derived PDGFB Stimulates mTORC1 Activation in Renal Carcinoma

    Full text link
    Clear cell renal cell carcinoma (ccRCC) is a hypervascular tumor that is characterized by bi-allelic inactivation of the VHL tumor suppressor gene and mTOR signalling pathway hyperactivation. The pro-angiogenic factor PDGFB, a transcriptional target of super enhancer-driven KLF6, can activate the mTORC1 signalling pathway in ccRCC. However, the detailed mechanisms of PDGFB-mediated mTORC1 activation in ccRCC have remained elusive. Here, we investigated whether ccRCC cells are able to secrete PDGFB into the extracellular milieu and stimulate mTORC1 signalling activity. We found that ccRCC cells secreted PDGFB extracellularly, and by utilizing KLF6- and PDGFB-engineered ccRCC cells, we showed that the level of PDGFB secretion was positively correlated with the expression of intracellular KLF6 and PDGFB. Moreover, the reintroduction of either KLF6 or PDGFB was able to sustain mTORC1 signalling activity in KLF6-targeted ccRCC cells. We further demonstrated that conditioned media of PDGFB-overexpressing ccRCC cells was able to re-activate mTORC1 activity in KLF6-targeted cells. In conclusion, cancer cell-derived PDGFB can mediate mTORC1 signalling pathway activation in ccRCC, further consolidating the link between the KLF6-PDGFB axis and the mTORC1 signalling pathway activity in ccRCC

    Reverting <i>TP53</i> Mutation in Breast Cancer Cells: Prime Editing Workflow and Technical Considerations

    Full text link
    Breast cancer is the leading cause of cancer-related deaths in women. The aggressive breast cancer subtype is commonly linked to the genetic alterations in the TP53 tumor suppressor gene, predominantly the missense mutations. Robust experimental models are needed to gain better insights into these mutations’ molecular properties and implications in tumorigenesis. The generation of such models harboring the alterations is feasible with the CRISPR-based gene editing technology. Moreover, the development of new CRISPR applications, particularly DNA base and prime editing, has considerably improved the precision and versatility of gene editing. Here, we employed the prime editing tool to revert a TP53 missense C > T mutation (L194F) in a T47D luminal A breast cancer cell line. In parallel, this prime editing tool was also utilized to introduce the L194F mutation in HEK293T cells. To assess the prime editing efficiency in both cell lines, we first performed Sanger sequencing in the prime-edited cells pool and single cell-derived clones. However, the Sanger sequencing approach did not detect any base substitution in these cell lines. Next, by employing the more sensitive amplicon target sequencing, we managed to identify the expected substitution in these T47D and HEK293T cells, albeit the editing efficiency was low. In light of these findings, we discussed the technical aspects and provided suggestions for improve the prime editing workflow and efficiency for future experiments

    Reverting TP53 mutation in breast cancer cells: prime editing workflow and technical considerations

    Full text link
    Breast cancer is the leading cause of cancer-related deaths in women. The aggressive breast cancer subtype is commonly linked to the genetic alterations in the TP53 tumor suppressor gene, predominantly the missense mutations. Robust experimental models are needed to gain better insights into these mutations’ molecular properties and implications in tumorigenesis. The generation of such models harboring the alterations is feasible with the CRISPR-based gene editing technology. Moreover, the development of new CRISPR applications, particularly DNA base and prime editing, has considerably improved the precision and versatility of gene editing. Here, we employed the prime editing tool to revert a TP53 missense C &amp;gt; T mutation (L194F) in a T47D luminal A breast cancer cell line. In parallel, this prime editing tool was also utilized to introduce the L194F mutation in HEK293T cells. To assess the prime editing efficiency in both cell lines, we first performed Sanger sequencing in the prime-edited cells pool and single cell-derived clones. However, the Sanger sequencing approach did not detect any base substitution in these cell lines. Next, by employing the more sensitive amplicon target sequencing, we managed to identify the expected substitution in these T47D and HEK293T cells, albeit the editing efficiency was low. In light of these findings, we discussed the technical aspects and provided suggestions for improve the prime editing workflow and efficiency for future experiments

    SARS-CoV-2 genomic surveillance in Malaysia: displacement of B.1.617.2 with AY lineages as the dominant Delta variants and the introduction of Omicron during the fourth epidemic wave

    Full text link
    Objectives: This study reported SARS-CoV-2 whole genome sequencing results from June 2021 to January 2022 from seven genome sequencing centers in Malaysia as part of the national surveillance program. Methods: COVID-19 samples that tested positive by reverse transcription polymerase chain reaction and with cycle threshold values <30 were obtained throughout Malaysia. Sequencing of SARS-CoV-2 complete genomes was performed using Illumina, Oxford Nanopore, or Ion Torrent platforms. A total of 6163 SARS-CoV-2 complete genome sequences were generated over the surveillance period. All sequences were submitted to the Global Initiative on Sharing All Influenza Data database. Results: From June 2021 to January 2022, Malaysia experienced the fourth wave of COVID-19 dominated by the Delta variant of concern, including the original B.1.617.2 lineage and descendant AY lineages. The B.1.617.2 lineage was identified as the early dominant circulating strain throughout the country but over time, was displaced by AY.59 and AY.79 lineages in Peninsular (west) Malaysia, and the AY.23 lineage in east Malaysia. In December 2021, pilgrims returning from Saudi Arabia facilitated the introduction and spread of the BA.1 lineage (Omicron variant of concern) in the country. Conclusion: The changing trends of circulating SARS-CoV-2 lineages were identified, with differences observed between west and east Malaysia. This initiative highlighted the importance of leveraging research expertise in the country to facilitate pandemic response and preparedness

    SARS-CoV-2 genomic surveillance in Malaysia: displacement of B.1.617.2 with AY lineages as the dominant Delta variants and the introduction of Omicron during the fourth epidemic wave

    Full text link
    Objectives This study reported SARS-CoV-2 whole genome sequencing results from June 2021 to January 2022 from seven genome sequencing centers in Malaysia as part of the national surveillance program. Methods COVID-19 samples that tested positive by reverse transcription polymerase chain reaction and with cycle threshold values <30 were obtained throughout Malaysia. Sequencing of SARS-CoV-2 complete genomes was performed using Illumina, Oxford Nanopore, or Ion Torrent platforms. A total of 6163 SARS-CoV-2 complete genome sequences were generated over the surveillance period. All sequences were submitted to the Global Initiative on Sharing All Influenza Data database. Results From June 2021 to January 2022, Malaysia experienced the fourth wave of COVID-19 dominated by the Delta variant of concern, including the original B.1.617.2 lineage and descendant AY lineages. The B.1.617.2 lineage was identified as the early dominant circulating strain throughout the country but over time, was displaced by AY.59 and AY.79 lineages in Peninsular (west) Malaysia, and the AY.23 lineage in east Malaysia. In December 2021, pilgrims returning from Saudi Arabia facilitated the introduction and spread of the BA.1 lineage (Omicron variant of concern) in the country. Conclusion The changing trends of circulating SARS-CoV-2 lineages were identified, with differences observed between west and east Malaysia. This initiative highlighted the importance of leveraging research expertise in the country to facilitate pandemic response and preparedness

    Surgical site infection after gastrointestinal surgery in children : an international, multicentre, prospective cohort study

    Get PDF
    Introduction Surgical site infection (SSI) is one of the most common healthcare-associated infections (HAIs). However, there is a lack of data available about SSI in children worldwide, especially from low-income and middle-income countries. This study aimed to estimate the incidence of SSI in children and associations between SSI and morbidity across human development settings. Methods A multicentre, international, prospective, validated cohort study of children aged under 16 years undergoing clean-contaminated, contaminated or dirty gastrointestinal surgery. Any hospital in the world providing paediatric surgery was eligible to contribute data between January and July 2016. The primary outcome was the incidence of SSI by 30 days. Relationships between explanatory variables and SSI were examined using multilevel logistic regression. Countries were stratified into high development, middle development and low development groups using the United Nations Human Development Index (HDI). Results Of 1159 children across 181 hospitals in 51 countries, 523 (45 center dot 1%) children were from high HDI, 397 (34 center dot 2%) from middle HDI and 239 (20 center dot 6%) from low HDI countries. The 30-day SSI rate was 6.3% (33/523) in high HDI, 12 center dot 8% (51/397) in middle HDI and 24 center dot 7% (59/239) in low HDI countries. SSI was associated with higher incidence of 30-day mortality, intervention, organ-space infection and other HAIs, with the highest rates seen in low HDI countries. Median length of stay in patients who had an SSI was longer (7.0 days), compared with 3.0 days in patients who did not have an SSI. Use of laparoscopy was associated with significantly lower SSI rates, even after accounting for HDI. Conclusion The odds of SSI in children is nearly four times greater in low HDI compared with high HDI countries. Policies to reduce SSI should be prioritised as part of the wider global agenda.Peer reviewe

    Exploring the cost-effectiveness of high versus low perioperative fraction of inspired oxygen in the prevention of surgical site infections among abdominal surgery patients in three low- and middle-income countries

    Full text link
    Background: This study assessed the potential cost-effectiveness of high (80–100%) vs low (21–35%) fraction of inspired oxygen (FiO2) at preventing surgical site infections (SSIs) after abdominal surgery in Nigeria, India, and South Africa. Methods: Decision-analytic models were constructed using best available evidence sourced from unbundled data of an ongoing pilot trial assessing the effectiveness of high FiO2, published literature, and a cost survey in Nigeria, India, and South Africa. Effectiveness was measured as percentage of SSIs at 30 days after surgery, a healthcare perspective was adopted, and costs were reported in US dollars ().Results:HighFiO2maybecosteffective(cheaperandeffective).InNigeria,theaveragecostforhighFiO2was). Results: High FiO2 may be cost-effective (cheaper and effective). In Nigeria, the average cost for high FiO2 was 216 compared with 222forlowFiO2leadingtoa 222 for low FiO2 leading to a −6 (95% confidence interval [CI]: −13to 13 to −1) difference in costs. In India, the average cost for high FiO2 was 184comparedwith184 compared with 195 for low FiO2 leading to a −11(9511 (95% CI: −15 to −6)differenceincosts.InSouthAfrica,theaveragecostforhighFiO2was6) difference in costs. In South Africa, the average cost for high FiO2 was 1164 compared with 1257forlowFiO2leadingtoa 1257 for low FiO2 leading to a −93 (95% CI: −132to 132 to −65) difference in costs. The high FiO2 arm had few SSIs, 7.33% compared with 8.38% for low FiO2, leading to a −1.05 (95% CI: −1.14 to −0.90) percentage point reduction in SSIs. Conclusion: High FiO2 could be cost-effective at preventing SSIs in the three countries but further data from large clinical trials are required to confirm this
    corecore