3 research outputs found

    Newton-raphson method to solve systems of non-linear equations in VANET performance optimization

    Get PDF
    Nowadays, Vehicular Ad-Hoc Network (VANET) has got more attention from the researchers. The researchers have studied numerous topics of VANET, such as the routing protocols of VANET and the MAC protocols of VANET. The aim of their works is to improve the network performance of VANET, either in terms of energy consumption or packet delivery ratio (PDR) and delay. For this research paper, the main goal is to find the coefficient of a, b and c of three non-linear equations by using a Newton-Raphson method. Those three non-linear equations are derived from a different value of Medium Access Control (MAC) protocol's parameters. After that, those three coefficient is then will be used in optimization of the VANET in terms of energy, PDR, and delay

    Performance Comparison of Energy Efficient Dynamic Transmission and Static Transmission Power in Static Mobility Node Wireless Ad-Hoc Network

    No full text
    Transmission power optimization in Wireless Ad-Hoc Network is an important thing in order to minimize the energy consumption for effective utilization of the applications like Vehicle Ad-Hoc Network (VANET) applications. If one or more nodes in the wireless Ad-hoc network have little or no energy, then data transmission will be temporarily or permanently interrupted which might create a serious havoc in the Ad-hoc network especially during vital information transferred. This will, in turn, affect the performance of the entire network. Therefore transmission power control is one of the important research topics that needs to be focused in the wireless ad-hoc network in order to ensure effective energy consumption. Recently, we proposed a Dynamic Transmission Power algorithm to maintain network connectivity by adapting node’s transmission power based on the distance between the vehicles in VANET. Our research aims to design a dynamic transmission power that can minimize the rate of energy consumption. Hence, in order to develop the proposed method, prerequisite experiment need to be done. This paper investigates the energy saving efficiency of dynamic and static transmission range in static mobility node wireless ad-hoc network which is prerequisite experiments before further experiment on VANET can be carried on. The simulation results prove that dynamic transmission range gives better energy consumption compared to static transmission range, so it is worth it to carry out the subsequent experiments on VANET

    Performance Comparison of Energy Efficient Dynamic Transmission and Static Transmission Power in Static Mobility Node Wireless Ad-Hoc Network

    No full text
    Transmission power optimization in Wireless Ad-Hoc Network is an important thing in order to minimize the energy consumption for effective utilization of the applications like Vehicle Ad-Hoc Network (VANET) applications. If one or more nodes in the wireless Ad-hoc network have little or no energy, then data transmission will be temporarily or permanently interrupted which might create a serious havoc in the Ad-hoc network especially during vital information transferred. This will, in turn, affect the performance of the entire network. Therefore transmission power control is one of the important research topics that needs to be focused in the wireless ad-hoc network in order to ensure effective energy consumption. Recently, we proposed a Dynamic Transmission Power algorithm to maintain network connectivity by adapting node’s transmission power based on the distance between the vehicles in VANET. Our research aims to design a dynamic transmission power that can minimize the rate of energy consumption. Hence, in order to develop the proposed method, prerequisite experiment need to be done. This paper investigates the energy saving efficiency of dynamic and static transmission range in static mobility node wireless ad-hoc network which is prerequisite experiments before further experiment on VANET can be carried on. The simulation results prove that dynamic transmission range gives better energy consumption compared to static transmission range, so it is worth it to carry out the subsequent experiments on VANET
    corecore