82 research outputs found
An Incidence Geometry approach to Dictionary Learning
We study the Dictionary Learning (aka Sparse Coding) problem of obtaining a
sparse representation of data points, by learning \emph{dictionary vectors}
upon which the data points can be written as sparse linear combinations. We
view this problem from a geometry perspective as the spanning set of a subspace
arrangement, and focus on understanding the case when the underlying hypergraph
of the subspace arrangement is specified. For this Fitted Dictionary Learning
problem, we completely characterize the combinatorics of the associated
subspace arrangements (i.e.\ their underlying hypergraphs). Specifically, a
combinatorial rigidity-type theorem is proven for a type of geometric incidence
system. The theorem characterizes the hypergraphs of subspace arrangements that
generically yield (a) at least one dictionary (b) a locally unique dictionary
(i.e.\ at most a finite number of isolated dictionaries) of the specified size.
We are unaware of prior application of combinatorial rigidity techniques in the
setting of Dictionary Learning, or even in machine learning. We also provide a
systematic classification of problems related to Dictionary Learning together
with various algorithms, their assumptions and performance
Nucleation-free rigidity
When all non-edge distances of a graph realized in as a {\em
bar-and-joint framework} are generically {\em implied} by the bar (edge)
lengths, the graph is said to be {\em rigid} in . For ,
characterizing rigid graphs, determining implied non-edges and {\em dependent}
edge sets remains an elusive, long-standing open problem.
One obstacle is to determine when implied non-edges can exist without
non-trivial rigid induced subgraphs, i.e., {\em nucleations}, and how to deal
with them.
In this paper, we give general inductive construction schemes and proof
techniques to generate {\em nucleation-free graphs} (i.e., graphs without any
nucleation) with implied non-edges. As a consequence, we obtain (a) dependent
graphs in that have no nucleation; and (b) nucleation-free {\em
rigidity circuits}, i.e., minimally dependent edge sets in . It
additionally follows that true rigidity is strictly stronger than a tractable
approximation to rigidity given by Sitharam and Zhou
\cite{sitharam:zhou:tractableADG:2004}, based on an inductive combinatorial
characterization.
As an independently interesting byproduct, we obtain a new inductive
construction for independent graphs in . Currently, very few such inductive
constructions are known, in contrast to
- …