209 research outputs found

    Structural characterization of a cytosine-rich potential quadruplex forming sequence in the EGFR promoter

    Get PDF
    I-motifs are tetra-helixes that may form in cytosine-rich strands. They are based on cytosine-cytosine(+) base pairs that require the N3 hemi-protonation of the nucleobases, and therefore, the stability of these non-canonical DNA arrangements depends on pH. These structures are promising targets for the development of new cancer therapies since they are enriched in the promoters of oncogenes where they can play a role in the regulation of transcription. The proximal promoter of the EGFR oncogene has multiple regions with a significant potential to form such a tetra-helix arrangement. Here, we present the thermodynamic characterization of a C-rich sequence located 37 nucleotides upstream of the transcription starting site of EGFR. We confirmed the ability of this sequence to fold into an I-motif. By applying a global analysis of calorimetric and spectroscopic data, we derived the dependency of the apparent standard Gibbs free energy change associated with the I-motif folding upon temperature and pH. The results showed that, in contrast to in silico prediction, only 4 CC+ base pairs formed while additional GC and TT base pairings were detected in the I-motif. Noteworthy, a single residue mutation at G14 largely shifts the equilibrium toward the formation of multimeric species

    Double-stranded flanking ends affect the folding kinetics and conformational equilibrium of G-quadruplexes forming sequences within the promoter of KIT oncogene

    Get PDF
    G-quadruplexes embedded within promoters play a crucial role in regulating the gene expression. KIT is a widely studied oncogene, whose promoter contains three G-quadruplex forming sequences, c-kit1, c-kit2 and c-kit 17. For these sequences available studies cover ensemble and single-molecule analyses, although for kit 17 the latter were limited to a study on a promoter domain comprising all of them. Recently, c-kit2 has been reported to fold according to a multi-step process involving folding intermediates. Here, by exploiting fluorescence resonance energy transfer, both in ensemble and at the single molecule level, we investigated the folding of expressly designed constructs in which, alike in the physiological context, either c-kit2 or c-kit 17 are flanked by double stranded DNA segments. To assess whether the presence of flanking ends at the borders of the G-quadruplex affects the folding, we studied under the same protocols oligonucleotides corresponding to the minimal G-quadruplex forming sequences. Data suggest that addition of flanking ends results in biasing both the final equilibrium state and the folding kinetics. A previously unconsidered aspect is thereby unravelled, which ought to be taken into account to achieve a deeper insight of the complex relationships underlying the fine tuning of the gene-regulatory properties of these fascinating DNA structures

    Pixantrone-rituximab versus gemcitabine-rituximab in relapsed/refractory aggressive non-Hodgkin lymphoma.

    Get PDF
    UNLABELLED: We describe the rationale and design of the ongoing randomized, active-controlled, multicenter, Phase III study evaluating the efficacy of pixantrone and rituximab versus gemcitabine and rituximab in patients with diffuse large B-cell lymphoma or follicular grade 3 lymphoma, who are ineligible for high-dose chemotherapy and stem cell transplantation, and who failed front-line regimens containing rituximab. The administration schedule is pixantrone 50 mg/m(2) intravenously (iv.) or gemcitabine 1000 mg/m(2) iv. on days 1, 8 and 15, combined with rituximab 375 mg/m(2) iv. on day 1, up to six cycles. Pixantrone has a conditional European marketing approval for monotherapy in adults with multiple relapsed or refractory aggressive B-cell non-Hodgkin lymphoma. Our trial explores the efficacy of combining pixantrone with rituximab and completes postauthorization measures. TRIAL REGISTRATION NUMBER: NCT01321541

    Use of divalent metal ions in the DNA cleavage reaction of topoisomerase IV

    Get PDF
    It has long been known that type II topoisomerases require divalent metal ions in order to cleave DNA. Kinetic, mutagenesis and structural studies indicate that the eukaryotic enzymes utilize a novel variant of the canonical two-metal-ion mechanism to promote DNA scission. However, the role of metal ions in the cleavage reaction mediated by bacterial type II enzymes has been controversial. Therefore, to resolve this critical issue, this study characterized the DNA cleavage reaction of Escherichia coli topoisomerase IV. We utilized a series of divalent metal ions with varying thiophilicities in conjunction with oligonucleotides that replaced bridging and non-bridging oxygen atoms at (and near) the scissile bond with sulfur atoms. DNA scission was enhanced when thiophilic metal ions were used with substrates that contained bridging sulfur atoms. In addition, the metal-ion dependence of DNA cleavage was sigmoidal in nature, and rates and levels of DNA cleavage increased when metal ion mixtures were used in reactions. Based on these findings, we propose that topoisomerase IV cleaves DNA using a two-metal-ion mechanism in which one of the metal ions makes a critical interaction with the 3′-bridging atom of the scissile phosphate and facilitates DNA scission by the bacterial type II enzyme

    Structural Basis of Gate-DNA Breakage and Resealing by Type II Topoisomerases

    Get PDF
    Type II DNA topoisomerases are ubiquitous enzymes with essential functions in DNA replication, recombination and transcription. They change DNA topology by forming a transient covalent cleavage complex with a gate-DNA duplex that allows transport of a second duplex though the gate. Despite its biological importance and targeting by anticancer and antibacterial drugs, cleavage complex formation and reversal is not understood for any type II enzyme. To address the mechanism, we have used X-ray crystallography to study sequential states in the formation and reversal of a DNA cleavage complex by topoisomerase IV from Streptococcus pneumoniae, the bacterial type II enzyme involved in chromosome segregation. A high resolution structure of the complex captured by a novel antibacterial dione reveals two drug molecules intercalated at a cleaved B-form DNA gate and anchored by drug-specific protein contacts. Dione release generated drug-free cleaved and resealed DNA complexes in which the DNA gate instead adopts an unusual A/B-form helical conformation with a Mg2+ ion repositioned to coordinate each scissile phosphodiester group and promote reversible cleavage by active-site tyrosines. These structures, the first for putative reaction intermediates of a type II topoisomerase, suggest how a type II enzyme reseals DNA during its normal reaction cycle and illuminate aspects of drug arrest important for the development of new topoisomerase-targeting therapeutics

    Methanosarcina acetivorans C2A Topoisomerase IIIα, an Archaeal Enzyme with Promiscuity in Divalent Cation Dependence

    Get PDF
    Topoisomerases play a fundamental role in genome stability, DNA replication and repair. As a result, topoisomerases have served as therapeutic targets of interest in Eukarya and Bacteria, two of the three domains of life. Since members of Archaea, the third domain of life, have not been implicated in any diseased state to-date, there is a paucity of data on archaeal topoisomerases. Here we report Methanosarcina acetivorans TopoIIIα (MacTopoIIIα) as the first biochemically characterized mesophilic archaeal topoisomerase. Maximal activity for MacTopoIIIα was elicited at 30–35°C and 100 mM NaCl. As little as 10 fmol of the enzyme initiated DNA relaxation, and NaCl concentrations above 250 mM inhibited this activity. The present study also provides the first evidence that a type IA Topoisomerase has activity in the presence of all divalent cations tested (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+). Activity profiles were, however, specific to each metal. Known type I (ssDNA and camptothecin) and type II (etoposide, novobiocin and nalidixic acid) inhibitors with different mechanisms of action were used to demonstrate that MacTopoIIIα is a type IA topoisomerase. Alignment of MacTopoIIIα with characterized topoisomerases identified Y317 as the putative catalytic residue, and a Y317F mutation ablated DNA relaxation activity, demonstrating that Y317 is essential for catalysis. As the role of Domain V (C-terminal domain) is unclear, MacTopoIIIα was aligned with the canonical E. coli TopoI 67 kDa fragment in order to construct an N-terminal (1–586) and a C-terminal (587–752) fragment for analysis. Activity could neither be elicited from the fragments individually nor reconstituted from a mixture of the fragments, suggesting that native folding is impaired when the two fragments are expressed separately. Evidence that each of the split domains plays a role in Zn2+ binding of the enzyme is also provided
    • …
    corecore