4 research outputs found

    Tectonostratigraphic evolution of the northeastern Arabian Plate in Kurdistan since the Jurassic

    No full text
    La zone étudiée est située dans le nord de l Irak dans la Région Autonome du Kurdistan. Cette région correspond géographiquement à la partie nord-ouest de la chaîne du Zagros. La chaîne du Zagros est une chaîne plissée de couverture longue d environ 1800 km. Elle résulte du plissement de la couverture sédimentaire de la marge et de la plate-forme de la plaque arabe pendant la collision cénozoïque entre la plaque arabe et l Eurasie. Ce travail s appuie sur une étude tectono-stratigraphique des série jurassique à cénozoïque du Kurdistan. La période antérieure à la collision a principalement été étudiée, en particulier les relations entre les principaux évènements tectoniques et la sédimentation. The principaux domaines développés sont (1) la biostratigraphie à partir de l étude des assemblages de nannofossiles, (2) l analyse de la tectonique cassante et (3) l étude stratigraphique de la séquence d âge jurassique à cénozoïque (plus particulièrement crétacée). Les séries de la chaîne du Zagros montrent de nombreux changements latéraux et verticaux de facies et d environnement, plus particulièrement pendant le Crétacé. Au cours du Jurassique le Kurdistan était occupé par le bassin de Gotnia qui s ouvrait vers le sud-ouest vers le bassin de Kermansha. Du Berriasien au Barrémien le Kurdistan était couvert par les carbonates des formations de Balambo et de Sarmord. Dans l est et le sud-est du Kurdistan la formation de Sarmord passe latéralement graduellement aux facies de bassin de la formation de Balambo. De l Aptien au Cénomanien une épaisse série de carbonates d origine récifale constituant la formation de Qamchuqa s est déposé. Un premier épisode extensif peu marqué est enregistré à l Aptian. Il est associé à des changements latéraux de facies abrupts entre les formations de Qamchuqa et de Balambo. Pendant la période allant du Cénomanien au Turonien inférieur un graben apparait dans la région du Lac de Dokan dans l est du Kurdistan où se déposent des facies plus profonds (formations de Dokan et Gulneri) entourés de dépôts de plate-forme. Pendant le Turonien se déposent les facies de bassin constitués des calcaires fins à silex de la formation de Kometan qui couvrent le nord-est du Kurdistan. Ces calcaires sont absents dans le centre et l ouest du pays notamment dans les anticlinaux de Safeen, Shakrok et Harir où cette formation a été totalement ou partiellement érodée pendant la période Coniacien à Campanien inférieur. La sédimentation est très hétérogène pendant le Crétacé supérieur avec une lacune du Coniacien et Santonian. Un bassin associé à une tectonique extensive se développe au Campanien avec le dépôt des marnes et des calcaires marneux de la formation de Shiranish. La première apparition au Kurdistan des facies flyschoïdes de la formation de Tanjero a été précisément datée du Campanien supérieur au Kurdistan. La formation de Tanjero, d âge Campanien supérieur à Maastrichtien recouvre en concordance la formation de Shiranish. La formation de Tanjero se dépose dans le bassin d avant-fosse associé à l obduction des ophiolites téthysienne sur la plate-forme arabe. Le Campanien est une période de non-dépôt dans la partie centrale du Kurdistan (région de Safeen, Shakrok et Harir) alors qu à l ouest se développe une vaste plate-forme carbonatée (la plate-forme de Bekmeh). Cette sédimentation carbonatée disparait pendant le Campanien supérieur quand les calcaires marneux de la formation de Shiranish transgressent la plate-forme de Bekmeh. Dans le secteur d Aqra la formation de Tanjero passe latéralement aux facies récifaux maastrichtiens de la formation d Aqra. Cette dernière est recouverte en discordance par les carbonates de lagons de la formation de Khurmala. Pendant une grande partie du Campanien la sédimentation est contrôlées par des failles normales orientées NE-SW qui structures les grabens de Dokan, Spilk et Soran. Au cours du Maastrichtien dans l extrême nord-est du pays des extensions NE-SW et NNW-SSE se développent dans le bassin d avant-fosse et sont à l origine des structures en horsts et grabens. Les dépôts clastiques de la formation de Tanjero sédimentent dans les grabens tandis que des lentilles des calcaires récifaux se déposent sur les horsts. Ces lentilles calcaires intercalées dans la série clastique flyschoïde peuvent atteindre quelques dizaines de mètres d épaisseur et plusieurs kilomètres de long. L étude des déformations cassantes dans ces corps carbonatés du Maastrichtien moyen-supérieur a montré que l extension liée à la formation des structures en horsts et grabens était associée, par permutation des axes principaux de contraintes 1 et 2, à des régimes décrochants. Cependant l essentiel des paléo-tenseurs reconstruits dans le Zagros kurde à partir de l analyse des populations de failles à stries est associé à l orogénèse du Cénozoïque supérieur du Zagros, donc à la collision entre l Arabie et l Eurasie. Le champ de contrainte néogène lié à cet évènement majeur est caractérisé par une alternance de régimes compressifs et décrochants avec des axes de la contrainte principale 1 orientés NNE-SSW à ENE-WSW avec une pic principal orienté NE-SW.The studied area is located in Northern Iraq in the Kurdistan Region, which approximately corresponds to the North-Western part of the Zagros belt. The Zagros belt is an active fold and thrust belt approximately 1800 km long, mainly resulting from the deformation of the sedimentary sequence of the Arabian margin and shelf during the Cenozoic Arabian-Eurasia collision. This study concentrates on the tectono-stratigraphy evolution of Kurdistan from Jurassic up to present. However we mainly investigated the evolution of the pre-collision period, focusing on the relationship between tectonics and sedimentation. In this study we developed (1) a biostratigraphic approach using nannofossil analysis, (2) a fault tectonic analysis, and (3) a stratigraphic study of the Jurassic to Neogene sequences (more particularly the Cretaceous series). The Zagros fold belt in Kurdistan exhibits many lateral and vertical environmental and facies changes, especially during the Cretaceous times. During the Jurassic period the Kurdistan is occupied by the restricted Gotnia Basin. This basin disappeared and the Kurdistan area changed to open marine of a southwest Kermanshah Basin during the Cretaceous. During the Berriasian to Barremian the Kurdistan was covered by the carbonates of the Balambo and Sarmord formations. In the east and southeast the neritic Sarmord Formation gradationally and laterally passes to the basinal facies of the Balambo Formation. In the Aptian to Cenomanian period shallow massive reefal limestone of the Qamchuqa Formation deposited. The normal faulting that initiates during the Aptian is associated with an abrupt lateral change of the reefal Qamchuqa Formation to the Aptian-Cenomanian part of the Balambo Formation. During the Cenomanian-Early Turonian periods the graben formed in the Dokan Lake in eastern Kurdistan, where developed a deeper restricted environment (Dokan and Gulneri formations) surrounded by a shallow marine platform. During the Turonian the marine pelagic micritic cherty limestones of Kometan Formation covered northeast of Kurdistan, whereas in the Safeen, Shakrok and Harir anticlines the formation was totally, or partially, weathered during the Coniacian-Early Campanian period. The deposition during the Late Cretaceous is very heterogeneous with a gap in the Coniacian-Santonian times probably related to a non-deposition. Associated with extensive tectonics a basin developed during the Campanian with the deposition of shales, marls and marly limestones of the Shiranish Formation. The first appearance is the Kurdistan of the flysch facies of the Tanjero Formation was precisely dated of the Upper Campanian in northeastern Kurdistan. The Tanjero Formation conformably overlaying the Shiranish Formation and was deposited in the foredeep basin associated with the obduction of Tethyan ophiolites onto the Arabian Platform. The Early to Late Campanian period is a time of non-deposition in Central Kurdistan (Safeen, Shakrok and Harir anticlines). During the Late Campanian the Bekhme carbonate platform in the north disappeared when the marly limestones of the Shiranish Formation transgressed over the Bekmeh Platform. In the Aqra area the Maastrichtian Tanjero Formation laterally changed to the thick reefal sequence of the Aqra Formation that unconformably overlies by the Late Paleocene-Early Eocene lagoonal carbonate of the Khurmala Formation. The Campanian sedimentation is mainly controlled by NE- oriented normal faults forming Grabens in Dokan, Spilk and Soran areas. During the Maastrichtian in the extreme northeastern Kurdistan the NE-SW and NNW-SSE normal faults developed in the foredeep basin and originated horsts and grabens. Clastic sediments accumulated in the grabens and the reefal carbonate developed on the horsts. These bars are several tens of meters thick and commonly several kilometres long. The study of the brittle deformations in these Middle-Upper Maastrichtian carbonate bodies showed that the strike-slip faults associated with the extension, formed by permutation of the orientation of 1 and 2 axes. However most of the paleotensors reconstructed (compressional and strike-slip regimes) in the Kurdish Zagros from analysis of fault populations are associated with the Late Cenozoic Zagros orogeny, which results from the collision between Arabia and Eurasia. The Neogene stress field related to this major event is characterized by alternating compression with the principal stress axes 1 oriented NE-SW to ENE -WSW with a main peak oriented NE-SW.PARIS-BIUSJ-Sci.Terre recherche (751052114) / SudocSudocFranceF

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundRegular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.MethodsThe Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.FindingsThe leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.InterpretationLong-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere
    corecore