8 research outputs found

    Thermodynamic properties and thermal correlation lengths of a Hubbard model with bond-charge interaction

    Full text link
    We investigate the thermodynamics of a one-dimensional Hubbard model with bond-charge interaction X using the transfer matrix renormalization group method (TMRG). Numerical results for various quantities like spin and charge susceptibilities, particle densities, specific heat and thermal correlation lengths are presented and discussed. We compare our data also to results for the exactly solvable case X/t=1 as well as to bosonisation results for weak coupling X/t << 1, which shows excellent agreement. We confirm the existence of a Tomonaga-Luttinger and a Luther-Emery liquid phase, in agreement with previous studies at zero temperature. Thermal singlet-pair correlation lengths are shown to dominate density and spin correlations for finite temperatures in certain parameter regimes.Comment: 13 pages, revte
    corecore