9 research outputs found

    Potential Use of Petroleum-based Sulfur in Rubber Industry

    Get PDF
    AbstractPotential use of petroleum-based sulfur generally classified as a by-product from refinery process is investigated as vulcanizing agent in rubber, and compared with commercial rhombic sulfur. Styrene-butadiene rubber (SBR) and nitrile rubber (NBR) are used as rubber matrices. Results obtained show that, between 2 types of sulfurs, the SBR system reveals similarity in cure behaviors whereas the NBR system demonstrates faster cure behavior when vulcanized by petroleum-based sulfur. However, rheological properties, mechanical properties, and dynamic mechanical properties of both rubbers show comparable results regardless of sulfur type. The results suggest the strong potential utilization of petroleum-based sulfur as vulcanizing agent as an alternative to the commercial rhombic sulfur usually used in rubber vulcanization

    Influence of Carbon Black/Silica Hybrid Ratio on Properties of Passenger Car Tire Sidewall

    Get PDF
    Influence of carbon black (CB)/precipitated silica (SiO2) hybrid ratio on properties of a passenger car tire (PCT) sidewall based on natural rubber (NR) and butadiene rubber (BR) blend was investigated. Rubbers filled with various hybrid filler ratios at a constant loading of 50 phr were prepared and tested. The filler reinforcement efficiency in association with crucial properties of the tire sidewall were of interest. Results show the enhanced rubber–filler interaction with increasing SiO2 fraction leading to the improvement in many vulcanizate properties including hardness, tensile strength, tear strength and fatigue resistance, at the expense of cure efficiency and hysteretic behaviors (i.e., reduced heat build-up resistance and increased dynamic set). The results also suggest the improvement in tire sidewall performance of the NR/BR vulcanizates reinforced with CB/SiO2 hybrid filler, compared to that of the CB-filled vulcanizate

    Effects of Blend Ratio and SBR Type on Properties of Carbon Black-Filled and Silica-Filled SBR/BR Tire Tread Compounds

    Get PDF
    This work aimed at investigating the effects of blend ratio between styrene butadiene rubber (SBR) and butadiene rubber (BR) and SBR type (E-SBR and S-SBR) on properties of SBR/BR tire tread compounds. Influences of these parameters on properties of the tread compounds reinforced by 80 parts per hundred rubber (phr) of carbon black (CB) and silica were also compared. Results reveal that hardness, strengths, and wet grip efficiency were impaired whereas rolling resistance was improved with increasing BR proportion. Surprisingly, the presence of BR imparted poorer abrasion resistance in most systems, except for the CB-filled E-SBR system in which an enhanced abrasion resistance was observed. Obviously, S-SBR gave superior properties (tire performance) compared to E-SBR, particularly obvious in the silica-filled system. Compared with CB, silica gave comparable strengths, better wet grip efficiency, and lower rolling resistance. Carbon black, however, offered greater abrasion resistance than silica

    One-Pot Reactive Melt Recycling of PLA Post-Consumer Waste for the Production of Block Copolymer Nanocomposites of High Strength and Ductility

    No full text
    Post-consumer waste recycling is a crucial issue for building a sustainable society. However, mechanical recycling of poly(lactic acid) (PLA) often reduces the performance of the recycled material because PLA has a strong tendency to degrade during reprocessing. Therefore, it is of great interest to develop an effective recycling method to improve the mechanical performance of this material. This paper presents a one-pot melt process for turning PLA waste into a biodegradable block copolymer and its high strength and ductility composite. The process was conducted in a melt-mixer through a transesterification of PLA with poly(ethylene glycol) (PEG) or poly(propylene glycol) (PPG) as a soft component and clay as reinforcement. Effects of soft component content and sequence of clay addition on the mechanical performance of the prepared materials were focused. The results showed the successful preparation of PLA-based multiblock copolymers of high molecular weights (~100 kDa). Both virgin PLA and recycled source could serve as the starting material. PEG was more efficient than PPG in providing an intense improvement of PLA ductility. The nanocomposite of intercalated structure yielded nearly 100 times higher elongation at break (Eb = 506%) than the starting PLA (Eb = 5.6%) with high strength of 39.5 MPa and modulus of 1.4 GPa, considering the advantages of clay addition. Furthermore, the products with a broadened range of properties can be designed based on the ratio of PLA and soft component, as well as the organization and spatial distribution of clay in the copolymer matrices

    Reinforcement of Multiwalled Carbon Nanotube in Nitrile Rubber: In Comparison with Carbon Black, Conductive Carbon Black, and Precipitated Silica

    No full text
    The properties of nitrile rubber (NBR) reinforced by multiwalled carbon nanotube (MWCNT), conductive carbon black (CCB), carbon black (CB), and precipitated silica (PSi) were investigated via viscoelastic behavior, bound rubber content, electrical properties, cross-link density, and mechanical properties. The filler content was varied from 0 to 15 phr. MWCNT shows the greatest magnitude of reinforcement considered in terms of tensile strength, modulus, hardness, and abrasion resistance followed by CCB, CB, and PSi. The MWCNT filled system also exhibits extremely high levels of filler network and trapped rubber even at relatively low loading (5 phr) leading to high electrical properties and poor dynamic mechanical properties. Although CCB possesses the highest specific surface area, it gives lower level of filler network than MWCNT and also gives the highest elongation at break among all fillers. Both CB and PSi show comparable degree of reinforcement which is considerably lower than CCB and MWCNT
    corecore