4 research outputs found

    Investigation of Citric Acid By-Products from Rice Produced by Microbial Fermentation on Growth Performance and Villi Histology of Thai Broiler Chicken (KKU 1)

    No full text
    This study was conducted with Thai broiler chicken (KKU 1) to investigate the effect of citric acid by-products from rice (CABR) on growth performance and villi histology. A total of 192 broiler chicks were subject to three dietary treatments, including 0% CABR, 3% and 6% of dry matter. Body weight gains, feed intake, feed conversion ratio, survival rate, and production index (body weight gain, feed intake, feed conversion ratio, survival rates, and productive index, respectively) were considered for growth performance evaluation. Villi height (µm), crypt depth (µm), and villi: crypt ratio were recorded for the villi histological measurement. The performance did not show a significant effect when compared with the control group during at ages ranging from 1 to 56 days. Villi histology indicate a significant effect on villi height (µm), crypt depth (µm), and villi: crypt of broiler chicks compared with the control group. Also, the use of 3% CABR caused a reduction microbial contamination in chicken fecal matter. In conclusion, supplementation of CABR had no negative effects on growth performance of Thai broiler chicken (KKU 1). Also, the addition of 3% CABR to the feed might help reduce fecal microbial contamination and affect the villi histology of Thai broiler chickens (KKU 1)

    Recycling of Citric Acid Waste for Potential Use as Animal Feed through Fermentation with Lactic Acid Bacteria and a Mixture of Fibrolytic Enzymes

    No full text
    Once improperly managed, the citric acid production industry generates waste, which contributes to pollution and other environmental issues. We proposed that, with sufficient quality improvement, citric acid by-product (CAP) might be used for animal feed, thereby reducing the environmental impact. The aim of the present study was to ferment citric acid by-product (CAP) by inoculation with lactic acid bacteria (LAB) and a fibrolytic enzyme mixture for quality improvement and crude fiber reduction in the waste products. LAB inoculants were L. casei TH14, and the additive enzyme used was a fibrolytic enzyme mixture (glucanase, pectinase, and carboxymethylcellulase) of a small-scale fermentation method. The seven treatments employed in this study were as follows: (1) control (untreated), (2) CAP-inoculated L. casei TH14 at 0.01% DM, (3) CAP-inoculated L. casei TH14 at 0.05% DM, (4) CAP-inoculated enzymes at 0.01% DM, (5) CAP-inoculated enzymes at 0.05% DM, (6) CAP-inoculated L. casei TH14 at 0.01% DM with enzymes at 0.01% DM, and (7) CAP-inoculated L. casei TH14 at 0.05% DM with enzymes at 0.05% DM. The samples were taken on days 1, 7, 14, 21, and 28 of ensiling, both before and after. Four replications were used. The results of the chemical composition of the CAP before and after ensilage inoculated with L. casei TH14 did not show any differences in crude protein, ether extract, ash, or gross energy, but the enzymes significantly (p < 0.05) decreased crude fiber and increased nitrogen-free extract. The combination was especially effective at improving the characteristics of CAP, with a reduction in crude fiber from 21.98% to 22.69%, of neutral detergent fiber (NDF) from 16.01% to 17.54%, and of acid detergent fiber (ADF) from 13.75% to 16.19%. Furthermore, the combination of L. casei TH14 and the enzyme increased crude protein from 1.75% to 2.24% at 28 days of ensiling. Therefore, CAP-inoculated L. casei TH14 did not change in chemical composition, while crude fiber, NDF, and ADF decreased when CAP was inoculated with enzyme. The combination of L. casei TH14 and the enzyme is more effective at improving chemical composition and reducing crude fiber and enhancing carbohydrate breakdown in the CAP. Finally, by enhancing the CAP’s quality, it may be possible to use it in animal feed and minimize its impact on the environment

    Physico-Chemical Characteristics and Amino Acid Content Evaluation of Citric Acid by-Product Produced by Microbial Fermentation as a Potential Use in Animal Feed

    No full text
    The production of citric acid produces 70% waste product or by-product. This by-product is produced by microbial fermentation which could be used as an alternative raw material for animal feed because it still contains citric acid, which could help to reduce pathogenic bacteria. The objective of this study is to evaluate the physical and chemical value of citric acid by-product from rice (CABR) to compare the properties with those of rice bran and broken rice and to determine its potential as an alternative energy source in animal feed. The chemical composition of CABR was calculated using proximate analysis. The color of CABR was darker, and the bulk density value was 549.65 (g/L) (p < 0.05). With free flow, the angle of repose was 40°, and the particle size had less polygonal starch granules. CABR had a low pH of 4.77 and contained 19.80% crude protein, 11.97% crude fiber, and 4005.72 kcal/kg of energy. CABR had a higher crude protein value than broken rice and rice bran and a higher gross energy value than broken rice but less than rice bran. It also had a higher crude fiber value (p > 0.05). The results suggest that CABR could be utilized as an energy and protein source for animal feed formulations
    corecore