7 research outputs found

    Rice mutants, selected under severe drought stress, show reduced stomatal density and improved water use efficiency under restricted water conditions

    Get PDF
    IntroductionRice is among the least water-use-efficient crops, and rice plants utilise most of their water uptake for transpirational cooling via stomata. To improve water-use efficiency (WUE) in rice, reducing stomatal density and size could help optimise transpiration and photosynthesis. MethodologyIn this study, we compared two series of purple rice stomata mutants: the Stomatal Model Mutant (SMM) identified by microscopic observation of flag-leaf stomata, and the Drought-selected Model Mutant (DMM) generated through screening under severe water stress. After undergoing two rounds of severe water stress between -60 to -80 Ym, right before the R1–2 reproductive stage, three DMMs were selected based on their rapid recovery rate and % filled-grain percentage.ResultThe three DMMs displayed 618–697 stomatal units per mm2, similar to the SMMs low-density stomata mutant (JHN 8756 (LD)). Furthermore, the four SMMs, three DMMs and the Jao Hom Nin wild type (JHN WT) were treated with two restricted water condition schemes from seedlings to harvest. The total amount of irrigation and precipitation during the experiment was 78.1 L/plant (69.1 mm/plant) for the less restricted water condition (LR) and 47.5 L/plant (42 mm/plant) for the more restricted water condition (MR). Water condition treatments had no effects on stomatal density and stomatal index. In contrast, genotypes and restricted water condition schemes affected plant height, tillers/plant, % filled grains and shoot dry weight (SDW). The three DMMs and the JHN 8756 (LD), the SMM's low-density stomata mutant, displayed greater resilience towards more restricted water conditions than the SMMs and the JHN wild type. Particularly, DMMs were tolerant to more restricted water condition treatments, showing no SDW penalties. Together, the DMMs and the JHN 8756 (LD) displayed higher WUE under these conditions of more restricted water conditions. ConclusionA rigorous screening process to distinguish tolerant mutants with a rapid drought recovery rate from severe water stress could pave the way to isolate more mutants with better stomatal functionality and resilience in preparation for imminent climate changes

    Estimation of the Genetic Diversity and Population Structure of Thailand’s Rice Landraces Using SNP Markers

    Full text link
    Rice is a staple food for more than half of the world’s population. Modern rice varieties have been developed for high yield and quality; however, there has been a substantial loss of diversity. A greater number of genetically dynamic landraces could offer valuable and useful genetic resources for rice improvement. In this study, the genetic diversity and population structure of 365 accessions of lowland and upland landraces from four populations from different geographical regions of Thailand were investigated using 75 SNP markers. Clustering analyses using maximum likelihood, Principal Coordinate Analysis (PCoA), and Discriminant Analysis of Principal Components (DAPC) clustered these landraces into two main groups, corresponding to indica and japonica groups. The indica group was further clustered into two subgroups according to the DAPC and STRUCTURE analyses (K = 3). The analysis of molecular variance (AMOVA) analysis results revealed that 91% of the variation was distributed among individuals, suggesting a high degree of genetic differentiation among rice accessions within the populations. Pairwise FST showed the greatest genetic differentiation between the northeastern and southern populations and the smallest genetic differentiation between the northern and northeastern populations. Isolation-by-distance analysis based on a Mantel test indicated a significant relationship between the genetic distance and geographic distance among the Thai rice landraces. The results from this study provide insight into the genetic diversity of Thai rice germplasm, which will enhance the germplasm characterization, conservation, and utilization in rice genetics and breeding

    DataSheet_1_Rice mutants, selected under severe drought stress, show reduced stomatal density and improved water use efficiency under restricted water conditions.pdf

    Full text link
    IntroductionRice is among the least water-use-efficient crops, and rice plants utilise most of their water uptake for transpirational cooling via stomata. To improve water-use efficiency (WUE) in rice, reducing stomatal density and size could help optimise transpiration and photosynthesis. MethodologyIn this study, we compared two series of purple rice stomata mutants: the Stomatal Model Mutant (SMM) identified by microscopic observation of flag-leaf stomata, and the Drought-selected Model Mutant (DMM) generated through screening under severe water stress. After undergoing two rounds of severe water stress between -60 to -80 Ym, right before the R1–2 reproductive stage, three DMMs were selected based on their rapid recovery rate and % filled-grain percentage.ResultThe three DMMs displayed 618–697 stomatal units per mm2, similar to the SMMs low-density stomata mutant (JHN 8756 (LD)). Furthermore, the four SMMs, three DMMs and the Jao Hom Nin wild type (JHN WT) were treated with two restricted water condition schemes from seedlings to harvest. The total amount of irrigation and precipitation during the experiment was 78.1 L/plant (69.1 mm/plant) for the less restricted water condition (LR) and 47.5 L/plant (42 mm/plant) for the more restricted water condition (MR). Water condition treatments had no effects on stomatal density and stomatal index. In contrast, genotypes and restricted water condition schemes affected plant height, tillers/plant, % filled grains and shoot dry weight (SDW). The three DMMs and the JHN 8756 (LD), the SMM's low-density stomata mutant, displayed greater resilience towards more restricted water conditions than the SMMs and the JHN wild type. Particularly, DMMs were tolerant to more restricted water condition treatments, showing no SDW penalties. Together, the DMMs and the JHN 8756 (LD) displayed higher WUE under these conditions of more restricted water conditions. ConclusionA rigorous screening process to distinguish tolerant mutants with a rapid drought recovery rate from severe water stress could pave the way to isolate more mutants with better stomatal functionality and resilience in preparation for imminent climate changes.</p

    Image_1_Rice mutants, selected under severe drought stress, show reduced stomatal density and improved water use efficiency under restricted water conditions.jpeg

    Full text link
    IntroductionRice is among the least water-use-efficient crops, and rice plants utilise most of their water uptake for transpirational cooling via stomata. To improve water-use efficiency (WUE) in rice, reducing stomatal density and size could help optimise transpiration and photosynthesis. MethodologyIn this study, we compared two series of purple rice stomata mutants: the Stomatal Model Mutant (SMM) identified by microscopic observation of flag-leaf stomata, and the Drought-selected Model Mutant (DMM) generated through screening under severe water stress. After undergoing two rounds of severe water stress between -60 to -80 Ym, right before the R1–2 reproductive stage, three DMMs were selected based on their rapid recovery rate and % filled-grain percentage.ResultThe three DMMs displayed 618–697 stomatal units per mm2, similar to the SMMs low-density stomata mutant (JHN 8756 (LD)). Furthermore, the four SMMs, three DMMs and the Jao Hom Nin wild type (JHN WT) were treated with two restricted water condition schemes from seedlings to harvest. The total amount of irrigation and precipitation during the experiment was 78.1 L/plant (69.1 mm/plant) for the less restricted water condition (LR) and 47.5 L/plant (42 mm/plant) for the more restricted water condition (MR). Water condition treatments had no effects on stomatal density and stomatal index. In contrast, genotypes and restricted water condition schemes affected plant height, tillers/plant, % filled grains and shoot dry weight (SDW). The three DMMs and the JHN 8756 (LD), the SMM's low-density stomata mutant, displayed greater resilience towards more restricted water conditions than the SMMs and the JHN wild type. Particularly, DMMs were tolerant to more restricted water condition treatments, showing no SDW penalties. Together, the DMMs and the JHN 8756 (LD) displayed higher WUE under these conditions of more restricted water conditions. ConclusionA rigorous screening process to distinguish tolerant mutants with a rapid drought recovery rate from severe water stress could pave the way to isolate more mutants with better stomatal functionality and resilience in preparation for imminent climate changes.</p

    Thai Hom Mali Rice: Origin and Breeding for Subsistence Rainfed Lowland Rice System

    Full text link
    Abstract The world-renowned Thai Hom Mali Rice has been the most important aromatic rice originating in Thailand. The aromatic variety was collected from Chachoengsao, a central province, and after pure-line selection, it was officially named as Khao Dawk Mali 105, (KDML105). Because of its superb fragrance and cooking quality, KDML105 has been a model variety for studying genes controlling grain quality and aroma. The aromatic gene was cloned in KDML105, as an amino aldehyde dehydrogenase (AMADH) or better known as BADH2 located on chromosome 8. Later on, all other aromatic rice genes were discovered as allelic to the AMADH. As a selection of local landrace variety found in rainfed areas, the Thai Jasmine rice showed adaptive advantages over improved irrigated rice in less fertile lowland rainfed conditions. Because KDML105 was susceptible to most diseases and insect pests, marker-assisted backcross selection (MABC) was used for the genetic improvement since 2000. After nearly 17 years of MABC for integrating new traits into KDML105, a new generation of KDML105, designated HM84, was developed which maintains the cooking quality and fragrance, and has gained advantages during flash flooding, disease, and insect outbreak
    corecore