31 research outputs found
Effects of Asiatic Acid on Spatial Working Memory and Cell Proliferation in the Adult Rat Hippocampus
Asiatic acid is a pentacyclic triterpene from Centella asiatica. Previous studies have reported that asiatic acid exhibits antioxidant and neuroprotective activities in cell culture. It also prevents memory deficits in animal models. The objective of this study was to investigate the relationship between spatial working memory and changes in cell proliferation within the hippocampus after administration of asiatic acid to male Spraque-Dawley rats. Control rats received vehicle (propylene glycol) while treated rats received asiatic acid (30 mg/kg) orally for 14 or 28 days. Spatial memory was determined using the novel object location (NOL) test. In animals administered asiatic acid for both 14 and 28 days, the number of Ki-67 positive cells in the subgranular zone of the dentate gyrus was significantly higher than in control animals. This was associated with a significant increase in their ability to discriminate between novel and familiar object locations in a novel object discrimination task, a hippocampus-dependent spatial memory test. Administration of asiatic acid also significantly increased doublecortin (DCX) and Notch1 protein levels in the hippocampus. These findings demonstrate that asiatic acid treatment may be a potent cognitive enhancer which improves hippocampal-dependent spatial memory, likely by increasing hippocampal neurogenesis
Hesperidin Alleviates Methotrexate-Induced Memory Deficits via Hippocampal Neurogenesis in Adult Rats
Methotrexate (MTX), a folic acid antagonist, is widely used in cancer treatment. However, treatment with MTX reduces hippocampal neurogenesis, leading to memory deficits. Hesperidin (Hsd) is a flavonoid glycoside that promotes anti-inflammation, acts as an antioxidant, and has neuroprotective properties. Consumption of Hsd enhances learning and memory. In the present study, we investigated the protective effects of Hsd against MTX-induced impairments of memory and neurogenesis; male Sprague Dawley rats were administered with a single dose of MTX (75 mg/kg) by intravenous (i.v.) injection on days 8 and 15 or Hsd (100 mg/kg) by oral gavage for 21 days. Memory was tested using novel object location (NOL) and novel object recognition (NOR) tasks. Immunofluorescence staining of Ki-67, bromodeoxyuridine (BrdU), and doublecortin (DCX) was performed to assess cell proliferation, survival, and immature neurons. The data showed that Hsd and MTX did not disable locomotor ability. The MTX animals exhibited memory deficits in both memory tests. There were significant decreases in the numbers of cell proliferation, survival, and immature neurons in the MTX animals. However, co-administration with MTX and Hsd alleviated memory loss and neurogenesis decline. These results revealed that Hsd could protect against MTX side effects in the animals in this study
Protective effect of metformin on methotrexate induced reduction of rat hippocampal neural stem cells and neurogenesis
Adult neurogenesis is a process in which the adult neural stem cells produce newborn neurons that are implicated in terms of learning and memory. Methotrexate (MTX) is a chemotherapeutic drug, which has a negative effect on memory and hippocampal neurogenesis in animal models. Metformin is an antidiabetic drug with strong antioxidant capacities. We found that metformin ameliorates MTX induced deteriorations of memory and hippocampal neurogenesis in adult rats. In this study, we focus to investigate neural stem cells, biomarkers of apoptosis, and the protein for synaptogenesis, which involves in the transcription factors of the hippocampus in rats that received metformin and MTX. Male Sprague-Dawley rats were composed of control, MTX, metformin, and MTX+metformin groups. MTX (75Â mg/kg, i.v.) was given on days 7 and 14, whereas metformin (200Â mg/kg, i.p.) was given for 14 days. Hippocampal neural stem cells in the subgranular zone (SGZ) were quantified using immunofluorescence staining of Sox2 and nestin. Protein expression including PSD95, Casepase-3, Bax, Bcl-2, CREB, and pCREB were determined using Western blotting. MTX-treated rats displayed decreases in Sox2 and nestin-positive cells in the SGZ. Increases in Caspase-3 and Bax levels and decreases in PSD95, Bcl-2, CREB, and pCREB protein expressions in the hippocampus were also detected. However, these negative impacts of MTX were ameliorated by co-treatment with metformin. These consequences postulate that metformin has a potential to increase neural stem cells, synaptic plasticity, decreased apoptotic activities, and transcription factors, resulting in upregulation of hippocampal neurogenesis in MTX-treated rats
Caffeic acid protects against l-methionine induced reduction in neurogenesis and cognitive impairment in a rat model
l-methionine (L-met) is a substantial non-polar amino acid for normal development. L-met is converted to homocysteine that leads to hyperhomocysteinemia and subsequent excessive homocysteine in serum resulting in stimulating oxidative stress and vascular dementia. Several studies have found that hyperhomocysteine causes neuronal cell damage, which leads to memory impairment. Caffeic acid is a substrate in phenolic compound discovered in plant biosynthesis. Caffeic acid contains biological antioxidant and neuroprotective properties. The neuroprotective reaction of caffeic acid can protect against the brain disruption from hydrogen peroxide produced by oxidative stress. It also enhances GSH and superoxide dismutase activities, which protect against neuron cell loss caused by oxidative stress in the hippocampus. Hence, we investigated the protective role of caffeic acid in hippocampal neurogenesis and cognitive impairment induced by L-met in rats. Six groups of Sprague Dawley rats were assigned including control, L-met (1.7 g/kg/day), caffeic acid (20, 40 mg/kg), and L-met + caffeic acid (20, 40 mg/kg) groups. Spatial and recognition memories were subsequently examined using novel object location (NOL) and novel object recognition (NOR) tests. Moreover, the immunofluorescence technique was performed to detect Ki-67/RECA-1, bromodeoxyuridine (BrdU)/NeuN and p21 markers to represent hippocampal neurogenesis changes. The results revealed decreases in vasculature related cell proliferation and neuronal cell survival. By contrast, cell cycle arrest was increased in the L-met group. These results showed the association of the spatial and recognition memory impairments. However, the deterioration can be restored by co-administration with caffeic acid
Hesperidin Reduces Memory Impairment Associated with Adult Rat Hippocampal Neurogenesis Triggered by Valproic Acid
Treatment with valproic acid (VPA) deteriorates hippocampal neurogenesis, which leads to memory impairment. Hesperidin (Hsd) is a plant-based bioflavonoid that can augment learning and memory. This study aimed to understand the effect of Hsd on the impairment of hippocampal neurogenesis and memory caused by VPA. The VPA (300 mg/kg) was administered by intraperitoneal injection twice daily for 14 days, and Hsd (100 mg/kg/day) was administered by oral gavage once a day for 21 days. All rats underwent memory evaluation using the novel object location (NOL) and novel object recognition (NOR) tests. Immunofluorescent staining of Ki-67, BrdU/NeuN, and doublecortin (DCX) was applied to determine hippocampal neurogenesis in cell proliferation, neuronal survival, and population of the immature neurons, respectively. VPA-treated rats showed memory impairments in both memory tests. These impairments resulted from VPA-induced decreases in the number of Ki-67-, BrdU/NeuN-, and DCX-positive cells in the hippocampus, leading to memory loss. Nevertheless, the behavioral expression in the co-administration group was improved. After receiving co-administration with VPA and Hsd, the numbers of Ki-67-, BrdU/NeuN-, and DCX-positive cells were improved to the normal levels. These findings suggest that Hsd can reduce the VPA-induced hippocampal neurogenesis down-regulation that results in memory impairments
Hesperidin ameliorates impairment in hippocampal neural stem cells related to apoptosis induced by methotrexate in adult rats
Neurogenesis is a process of generating neural stem cells (NSCs) as functional neurons can be decreased after chemotherapy treatments. Methotrexate (MTX) is a folate antagonist that is used for cancer treatment but has negative effects, including oxidative stress, neuronal apoptosis and cognitive impairments. Hesperidin (Hsd), a flavonoid found in citrus fruits, has antioxidant and neuroprotection properties. This study investigated whether Hsd could attenuate impairments of hippocampal neural stem cells related to apoptosis induced by MTX. Spraque-Dawley rats (n = 24) were divided into 4 groups: (1) Vehicle group received propylene glycol (21 days) and 0.9% normal saline (day 8 and 15), (2) Hsd group received 100 mg/kg (21 days), (3) MTX group received 75 mg/kg (days 8 and 15) and (4) MTX+Hsd group received MTX, 75 mg/kg (day 8 and 15) and Hsd 100 mg/kg (21 days). Our results showed that MTX decreased hippocampal neural stem cells including SRY (sex determining region Y)-box 2 (SOX2) and nestin. MTX diminished vascular related (VR) Ki-67 positive cells in the hippocampus but not non-vascular related (NVR) Ki-67. Additionally, MTX reduced SOX2, nestin, postsynaptic density protein 95 (PSD-95) and B-cell lymphoma-2 family of proteins (Bcl-2), whereas Bax and caspase-3 were enhanced in the hippocampal tissues. Interestingly, co-treatment with Hsd and MTX revealed upregulation of SOX2, nestin and VR Ki-67 positive cells as well as elevated SOX2, nestin, PSD-95 and Bcl-2 proteins. Moreover, receiving both Hsd and MTX significantly suppressed increased Bax and caspase-3. These results confirm that Hsd can ameliorate MTX-induced impairments of hippocampal NSC proliferation and neuronal apoptosis
Asiatic Acid Prevents the Deleterious Effects of Valproic Acid on Cognition and Hippocampal Cell Proliferation and Survival
Valproic acid (VPA) is commonly prescribed as an anticonvulsant and mood stabilizer used in the treatment of epilepsy and bipolar disorder. A recent study has demonstrated that VPA reduces histone deacetylase (HDAC) activity, an action which is believed to contribute to the effects of VPA on neural stem cell proliferation and differentiation which may explain the cognitive impairments produced in rodents and patients. Asiatic acid is a triterpenoid derived from the medicinal plant Centella asiatica. Our previous study has shown that Asiatic acid improves working spatial memory and increases cell proliferation in the sub granular zone of the hippocampal dentate gyrus. In the present study we investigate the effects of Asiatic acid in preventing the memory and cellular effects of VPA. Male Spraque-Dawley rats were orally administered Asiatic acid (30 mg/kg/day) for 28 days, while VPA-treated animals received injections of VPA (300 mg/kg) twice a day from Day 15 to Day 28 for 14 days. Spatial memory was determined using the novel object location (NOL) test and hippocampal cell proliferation and survival was quantified by immuostaining for Ki-67 and Bromodeoxyuridine (BrdU), respectively. The results showed that VPA-treated animals were unable to discriminate between objects in familiar and novel locations. Moreover, VPA significantly reduced numbers of Ki-67 and BrdU positive cells. These results indicate that VPA treatment caused impairments of spatial working memory, cell proliferation and survival in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). However, these abnormalities were restored to control levels by co-treatment with Asiatic acid. These data demonstrate that Asiatic acid could prevent the spatial memory and neurogenesis impairments caused by VPA
Melatonin Protects against the Side-Effects of 5-Fluorouracil on Hippocampal Neurogenesis and Ameliorates Antioxidant Activity in an Adult Rat Hippocampus and Prefrontal Cortex
Melatonin is an endogenous hormone that exhibits antioxidant functions and neuroprotective effects. The hippocampus and the prefrontal cortex (PFC) play an important role linked to working memory. 5-fluorouracil (5-FU) can induce oxidative stress and reduce neurogenesis in the subgranular zone (SGZ) of the dentate gyrus in a rat hippocampus and these alterations are related to working memory deficits. This study aimed to determine the effect of melatonin on 5-FU-induced oxidative stress that interferes with the antioxidant enzymes and protein expression levels in a rat hippocampus and PFC. A total of 68 male Sprague Dawley rats were divided into four groups: vehicle, 5-FU, melatonin and melatonin+5-FU groups. Rats were administered 5-FU (25 mg/kg, i.v.) on days 9, 12, 15, 18 and 21 and received melatonin (8 mg/kg, i.p.) at 19:00 from day 1 to day 21 of the experiment. Lipid peroxidation was assessed by measuring malondialdehyde (MDA) levels. Antioxidant enzyme levels including glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) were determined. p21 immunofluorescence staining and Western blotting were used to detect the cell cycle arrest and protein expression of the nuclear factor erythroid 2-related factor 2 (Nrf2), doublecortin (DCX) and brain derived neurotrophic factor (BDNF), respectively. The results showed that melatonin reduced the number of p21-positive cells in the SGZ of the dentate gyrus and increased Nrf2, DCX and BDNF protein expression in rats treated with 5-FU. Moreover, melatonin restored antioxidant enzyme levels and reduced oxidative stress in the hippocampus and PFC caused by 5-FU. These findings reveal a mechanism of the neuroprotective properties of melatonin against 5-FU in a rat hippocampus and PFC