7 research outputs found

    Combining Ascochyta blight and Botrytis grey mould resistance in chickpea through interspecific hybridization

    Get PDF
    Ascochyta blight (AB) caused by Ascochyta rabiei (Pass.) Labr. and Botrytis grey mould (BGM) caused by Botrytis cinerea (Pers. ex Fr.) are important diseases of the aerial plant parts of chickpea in most chickpea growing areas of the world. Although conventional approaches have contributed to reducing disease, the use of new technologies is expected to further reduce losses through these biotic stresses. Reliable screening techniques were developed: ‘field screening technique’ for adult plant screening, ‘cloth chamber technique’ and ‘growth chamber technique’ for the study of races of the pathogen and for segregating generations. Furthermore, the ‘cut twig technique’ for interspecific population for AB and BGM resistance was developed. For introgression of high levels of AB and BGM resistance in cultivated chickpea from wild relatives, accessions of seven annual wild Cicer spp. were evaluated and identified: C. judaicum accessions 185, ILWC 95 and ILWC 61, C. pinnatifidum accessions 188, 199 and ILWC 212 as potential donors. C. pinnatifidum accession188 was crossed with ICCV 96030 and 62 F9 lines resistant to AB and BGM were derived. Of the derived lines, several are being evaluated for agronomic traits and yield parameters while four lines, GL 29029, GL29206, GL29212, GL29081 possessing high degree of resistance were crossed with susceptible high yielding cultivars BG 256 to improve resistance and to undertake molecular studies. Genotyping of F2 populations with SSR markers from the chickpea genome was done to identify markers potentially linked with AB and BGM resistance genes. In preliminary studies, of 120 SSR markers used, six (Ta 2, Ta 110, Ta 139, CaSTMS 7, CaSTMS 24 and Tr 29) were identified with polymorphic bands between resistant derivative lines and the susceptible parent. The study shows that wild species of Cicer are the valuable gene pools of resistance to AB and BGM. The resistant derivative lines generated here can serve as good pre-breeding material and markers identified can assist in marker assisted selection for resistance breeding

    Identification of mungbean lines with tolerance or resistance to yellow mosaic in fields in India where different begomovirus species and different Bemisia tabaci cryptic species predominate

    Get PDF
    Mungbean (Vigna radiata (L.) Wilczek) is an important pulse crop in India. A major constraint for improved productivity is the yield loss caused by mungbean yellow mosaic disease (MYMD). This disease is caused by several begomoviruses which are transmitted by the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). The objective of this study was to identify the predominant begomoviruses infecting mungbean and the major cryptic species of B. tabaci associated with this crop in India. The indigenous B. tabaci cryptic species Asia II 1 was found dominant in Northern India, whereas Asia II 8 was found predominant in Southern India. Repeated samplings over consecutive years indicate a stable situation with, Mungbean yellow mosaic virus strains genetically most similar to a strain from urdbean (MYMV-Urdbean) predominant in North India, strains most similar to MYMV-Vigna predominant in South India, and Mungbean yellow mosaic India virus (MYMIV) strains predominant in Eastern India. In field studies, mungbean line NM 94 showed a high level of tolerance to the disease in the Eastern state of Odisha where MYMIV was predominant and in the Southern state of Andhra Pradesh where MYMV-Vigna was predominant, but only a moderate level of tolerance in the Southern state of Tamil Nadu. However, in Northern parts of India where there was high inoculum pressure of MYMV-Urdbean during the Kharif season, NM 94 developed severe yellow mosaic symptoms. The identification of high level of tolerance in mungbean lines such as ML 1628 and of resistance in black gram and rice bean provides hope for tackling the disease through resistance breeding

    Identification of QTLs for resistance to Fusarium wilt and Ascochyta blight in a recombinant inbred population of chickpea (Cicer arietinum L.)

    Get PDF
    Fusarium wilt (FW; caused by Fusarium oxysporum f. sp. ciceris) and Ascochyta blight (AB; caused by Ascochyta rabiei) are two major biotic stresses that cause significant yield losses in chickpea (Cicer arietinum L.). In order to identify the genomic regions responsible for resistance to FW and AB, 188 recombinant inbred lines derived from a cross JG 62 × ICCV 05530 were phenotyped for reaction to FW and AB under both controlled environment and field conditions. Significant variation in response to FW and AB was detected at all the locations. A genetic map comprising of 111 markers including 84 simple sequence repeats and 27 single nucleotide polymorphism (SNP) loci spanning 261.60 cM was constructed. Five quantitative trait loci (QTLs) were detected for resistance to FW with phenotypic variance explained from 6.63 to 31.55%. Of the five QTLs, three QTLs including a major QTL on CaLG02 and a minor QTL each on CaLG04 and CaLG06 were identified for resistance to race 1 of FW. For race 3, a major QTL each on CaLG02 and CaLG04 were identified. In the case of AB, one QTL for seedling resistance (SR) against ‘Hisar race’ and a minor QTL each for SR and adult plant resistance against isolate 8 of race 6 (3968) were identified. The QTLs and linked markers identified in this study can be utilized for enhancing the FW and AB resistance in elite cultivars using marker-assisted backcrossing
    corecore