61 research outputs found

    Attenuation of Mycobacterium tuberculosis by disruption of a mas-like gene or a chalcone synthase-like gene, which causes deficiency in dimycocerosyl phthiocerol synthesis

    Get PDF
    Tuberculosis is one of the leading preventable causes of death. Emergence of drug-resistant tuberculosis makes the discovery of new targets for antimyrobacterial drugs critical. The unique mycobacterial cell wall lipids are known to play an important role in pathogenesis, and therefore the genes responsible for their biosynthesis offer potential new targets. To assess the possible role of some of the genes potentially involved in cell wall lipid synthesis, we disrupted a mas-like gene, msl7, and a chalcone synthase-like gene, pks10, with phage-mediated delivery of the disruption construct, in which the target gene was disrupted by replacement of an internal segment with the hygromycin resistance gene (hyg). Gene disruption by allelic exchange in the case of each disruptant was confirmed by PCR and Southern blot analyses. Neither msl7 nor pks10 mutants could produce dimycocerosyl phthiocerol, although both could produce mycocerosic acids. Thus, it is concluded that these gene products are involved in the biosynthesis of phthiocerol. Both mutants were found to be attenuated in a murine model, supporting the hypothesis that dimycocerosyl phthiocerol is a virulence factor and thus the many steps involved in its biosynthesis offer potential novel targets for antimycobacterial therapy

    Identification and characterization of Rv3281 as a novel subunit of a biotin-dependent Acyl-CoA carboxylase in Mycobacterium tuberculosis H37Rv

    Get PDF
    Mycobacterium tuberculosis produces a large number of structurally diverse lipids generated from the carboxylation products of acetyl-CoA and propionyl-CoA. A biotin-dependent acyl-CoA carboxylase was purified from M. tuberculosis H37Rv by avidin affinity chromatography, and the three major protein components were determined by N-terminal sequencing to be the 63-kDa alpha 3-subunit (AccA3, Rv3285), the 59-kDa beta 5-subunit (AccD5, Rv3280), and the 56-kDa beta 4-subunit (AccD4, Rv3799). A minor protein of about 24 kDa that co-purified with the above subunits was identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry to be the product of Rv3281 that is located immediately downstream of the open reading frame encoding the beta 5-subunit. This protein displays identity over a short stretch of amino acids with the recently discovered epsilon-subunits of Streptomyces coelicolor, suggesting that it might be an epsilon-subunit of the mycobacterial acyl-CoA carboxylase. To test this hypothesis, the carboxylase subunits were expressed in Escherichia coli and purified. Acyl-CoA carboxylase activity was successfully reconstituted for the first time from purified subunits of the acyl-CoA carboxylase of M. tuberculosis. The reconstituted alpha 3-beta 5 showed higher activity with propionyl-CoA than with acetyl-CoA, and the addition of the epsilon-subunit stimulated the carboxylation by 3.2- and 6.3-fold, respectively. The alpha 3-beta 4 showed very low activity with the above substrates but carboxylated long chain acyl-CoA. This epsilon-subunit contains five sets of tandem repeats at the N terminus that are required for maximal enhancement of carboxylase activity. The Rv3281 open reading frame is co-transcribed with Rv3280 in the mycobacterial cell, and the level of epsilon-protein was highest during the log phase and decreased during the stationary phase

    A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis

    Get PDF
    Twenty-four putative lipase/esterase genes of Mycobacterium tuberculosis H37Rv were expressed in Escherichia coli and assayed for long-chain triacylglycerol (TG) hydrolase activity. We show here that the product of Rv3097c (LIPY) hydrolyzed long-chain TG with high specific activity. LIPY was purified after solubilization from inclusion bodies; the enzyme displayed a K-m of 7.57 mM and V-max of 653.3 nmol/mg/min for triolein with optimal activity between pH 8.0 and pH 9.0. LIPY was inhibited by active serine-directed reagents and was inactivated at temperatures above 37 degrees C. Detergents above their critical micellar concentrations and divalent cations inhibited the activity of LIPY. The N-terminal half of LIPY showed sequence homology with the proline glutamic acid-polymorphic GC-rich repetitive sequences protein family of M. tuberculosis. The C-terminal half of LIPY possesses amino acid domains homologous with the hormone-sensitive lipase family and the conserved active-site motif GDSAG. LIPY shows low sequence identity with the annotated lipases of M. tuberculosis and with other bacterial lipases. We demonstrate that hypoxic cultures of M. tuberculosis, which had accumulated TG, hydrolyzed the stored TG when subjected to nutrient starvation. Under such conditions, lipY was induced more than all lipases, suggesting a central role for it in the utilization of stored TG. We also show that in the lipY-deficient mutant, TG utilization was drastically decreased under nutrient-deprived condition. Thus, LIPY may be responsible for the utilization of stored TG during dormancy and reactivation of the pathogen

    Human Granuloma In Vitro Model, for TB Dormancy and Resuscitation

    Get PDF
    Tuberculosis (TB) is responsible for death of nearly two million people in the world annually. Upon infection, Mycobacterium tuberculosis (Mtb) causes formation of granuloma where the pathogen goes into dormant state and can live for decades before resuscitation to develop active disease when the immune system of the host is weakened and/or suppressed. In an attempt to better understand host-pathogen interactions, several groups have been developing in vitro models of human tuberculosis granuloma. However, to date, an in vitro granuloma model in which Mtb goes into dormancy and can subsequently resuscitate under conditions that mimic weakening of the immune system has not been reported. We describe the development of a biomimetic in vitro model of human tuberculosis granuloma using human primary leukocytes, in which the Mtb exhibited characteristics of dormant mycobacteria as demonstrated by (1) loss of acid-fastness, (2) accumulation of lipid bodies (3) development of rifampicin-tolerance and (4) gene expression changes. Further, when these micro granulomas were treated with immunosuppressant anti-tumor necrosis factor-alpha monoclonal antibodies (anti-TNF alpha mAbs), resuscitation of Mtb was observed as has been found in humans. In this human in vitro granuloma model triacylglycerol synthase 1deletion mutant (Delta tgs1) with impaired ability to accumulate triacylglycerides (TG), but not the complemented mutant, could not go into dormancy. Deletion mutant of lipY, with compromised ability to mobilize the stored TG, but not the complemented mutant, was unable to come out of dormancy upon treatment with anti-TNF alpha mAbs. In conclusion, we have developed an in vitro human tuberculosis granuloma model that largely exhibits functional features of dormancy and resuscitation observed in human tuberculosis

    A Novel In Vitro Multiple-Stress Dormancy Model for Mycobacterium tuberculosis Generates a Lipid-Loaded, Drug-Tolerant, Dormant Pathogen

    Get PDF
    Background: Mycobacterium tuberculosis (Mtb) becomes dormant and phenotypically drug resistant when it encounters multiple stresses within the host. Inability of currently available drugs to kill latent Mtb is a major impediment to curing and possibly eradicating tuberculosis (TB). Most in vitro dormancy models, using single stress factors, fail to generate a truly dormant Mtb population. An in vitro model that generates truly dormant Mtb cells is needed to elucidate the metabolic requirements that allow Mtb to successfully go through dormancy, identify new drug targets, and to screen drug candidates to discover novel drugs that can kill dormant pathogen. Methodology/Principal Findings: We developed a novel in vitro multiple-stress dormancy model for Mtb by applying combined stresses of low oxygen (5%), high CO2 (10%), low nutrient (10 % Dubos medium) and acidic pH (5.0), conditions Mtb is thought to encounter in the host. Under this condition, Mtb stopped replicating, lost acid-fastness, accumulated triacylglycerol (TG) and wax ester (WE), and concomitantly acquired phenotypic antibiotic-resistance. Putative neutral lipid biosynthetic genes were up-regulated. These genes may serve as potential targets for new antilatency drugs. The triacylglycerol synthase1 (tgs1) deletion mutant, with impaired ability to accumulate TG, exhibited a lesser degree of antibiotic tolerance and complementation restored antibiotic tolerance. Transcriptome analysis with microarray revealed the achievement of dormant state showing repression of energy generation, transcription and translation machineries an

    Fungalysin

    No full text

    Fungalysin

    No full text

    Regulation of Expression of mas and fadD28, Two Genes Involved in Production of Dimycocerosyl Phthiocerol, a Virulence Factor of Mycobacterium tuberculosis

    No full text
    Transcriptional regulation of genes involved in the biosynthesis of cell wall lipids of Mycobacterium tuberculosis is poorly understood. The gene encoding mycocerosic acid synthase (mas) and fadD28, an adjoining acyl coenzyme A synthase gene, involved in the production of a virulence factor, dimycocerosyl phthiocerol, were cloned from Mycobacterium bovis BCG, and their promoters were analyzed. The putative promoters were fused to the xylE reporter gene, and its expression was measured in Escherichia coli, Mycobacterium smegmatis, and M. bovis BCG. In E. coli, the fadD28 promoter was not functional but the mas promoter was functional. Both fadD28 and mas promoters were functional in M. smegmatis, at approximately two- and sixfold-higher levels, respectively, than the BCG hsp60 promoter. In M. bovis BCG, the fadD28 and mas promoters were functional at three- and fivefold-higher levels, respectively, than the hsp60 promoter. Primer extension analyses identified transcriptional start points 60 and 182 bp upstream of the translational start codons of fadD28 and mas, respectively. Both promoters contain sequences similar to the canonical βˆ’10 and βˆ’35 hexamers recognized by the Οƒ(70) subunit of RNA polymerase. Deletions of the upstream regions of both genes indicated that 324 bp of the fadD28 and 228 bp of the mas were essential for promoter activity. Further analysis of the mas promoter showed that a 213-bp region 581 bp upstream of the mas promoter acted as a putative transcriptional enhancer, promoting high-level expression of the mas gene when present in either direction. This represents the identification of a rare example of an enhancer-like element in mycobacteria

    Virulence Attenuation Of Two Mas-Like Polyketide Synthase Mutants Of Mycobacterium Tuberculosis

    No full text
    The cell envelope of pathogenic mycobacteria is highly distinctive in that it contains a large number of structurally related very long multiple methyl-branched fatty acids. These complex molecules are thought to play important roles in cell envelope organization and virulence. The genetic and enzymic characterization of the polyketide synthase Mas, which is responsible for the synthesis of one such family of fatty acids (the mycocerosic acids), paved the way towards the identification of other enzymes involved in the synthesis of methyl-branched fatty acids in M. tuberculosis. In an effort to elucidate the origin of these complex fatty acids and their possible involvement in pathogenesis, the two mas-like polyketide genes pks5 and pks7 were disrupted in M. tuberculosis and the effects of their inactivation on fatty acid composition and virulence were analysed. While the disruption of pks7 resulted in a mutant deficient in the production of phthiocerol dimycocerosates, the cell envelope composition of the pks5 mutant was found to be identical to that of the wild-type parental strain M. tuberculosis H37Rv. Interestingly, both the pks5 and pks7 mutants displayed severe growth defects in mice

    Identification Of A Diacylglycerol Acyltransferase Gene Involved In Accumulation Of Triacylglycerol In Mycobacterium Tuberculosis Under Stress

    No full text
    Mycobacterium tuberculosis under stress stores triacylglycerol (TG). There are 15 genes in M. tuberculosis that belong to a novel family of TG synthase genes (tgs), but it is not known which of them is responsible for this accumulation of TG. In this paper, it is reported that M. tuberculosis H37Rv accumulated TG under acidic, static or hypoxic growth conditions, or upon treatment with NO, whereas TG accumulation was drastically reduced in the tgs1 (Rv3130c) disrupted mutant. Complementation with tgs1 restored this TG accumulation. C26 was a major fatty acid in this TG, indicating that the TGS1 gene product uses C26 fatty acid, which is known to be produced by the mycobacterial fatty acid synthase. TGS1 expressed in Escherichia coli preferred C26:0 CoA for TG synthesis. If TG storage is needed for the long-term survival of M. tuberculosis under dormant conditions, the tgs1 product could be a suitable target for antilatency drugs. Β© 2006 SGM
    • …
    corecore