28 research outputs found
Understanding the effect of sheared flow on microinstabilities
The competition between the drive and stabilization of plasma
microinstabilities by sheared flow is investigated, focusing on the ion
temperature gradient mode. Using a twisting mode representation in sheared slab
geometry, the characteristic equations have been formulated for a dissipative
fluid model, developed rigorously from the gyrokinetic equation. They clearly
show that perpendicular flow shear convects perturbations along the field at a
speed we denote by (where is the sound speed), whilst parallel
flow shear enters as an instability driving term analogous to the usual
temperature and density gradient effects. For sufficiently strong perpendicular
flow shear, , the propagation of the system characteristics is
unidirectional and no unstable eigenmodes may form. Perturbations are swept
along the field, to be ultimately dissipated as they are sheared ever more
strongly. Numerical studies of the equations also reveal the existence of
stable regions when , where the driving terms conflict. However, in both
cases transitory perturbations exist, which could attain substantial amplitudes
before decaying. Indeed, for , they are shown to exponentiate
times. This may provide a subcritical route to turbulence in
tokamaks.Comment: minor revisions; accepted to PPC
Men's science, women's science or science? : Some issues related to the study of girls' science education
It is a well documented fact that, in the Western World, girls and women are significantly under-represented in the physical sciences, both in the education system and within the scientific professions, including science teaching. The following paper draws mainly upon evidence relating to the UK, but it is believed that the issues raised are relevant to other Western countries.Peer reviewe